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Abstract
We describe a hierarchical Bayes model for the influence of constitutional genotypes from a linkage
scan on the expression of a large number of genes. The model comprises linear regression models
for the means in relation to genotypes and for the covariances between pairs of related individuals
in relation to their identity-by-descent estimates. The matrices of regression coefficients for all
possible pairs of single-nucleotide polymorphisms (SNPs) by all possible expressed genes are in
turn modeled as a mixture of null values and a normal distribution of non-null values, with
probabilities and means given by a third-level model of SNP and trait random effects and a spatial
regression on the distance between the SNP and the expressed gene. The latter provides a way of
testing for cis and trans effects. The method was applied to data on 116 SNPs and 189 genes on
chromosome 11, for which Morley et al. (Nature 2004, 430: 743–747) had previously reported
linkage. We were able to confirm the association of the expression of HSD17B12 with a SNP in the
same region reported by Morley et al., and also detected a SNP that appeared to affect the
expression of many genes on this chromosome. The approach appears to be a promising way to
address the huge multiple comparisons problem for relating genome-wide genotype × expression
data.

Background
Recent advances in genomic technology now allow geno-
typing of hundreds of thousands of single-nucleotide pol-
ymorphisms (SNPs) and measurement of the expression
of tens of thousands of genes on single microarrays or
chips at a manageable cost. Extensive literature on the
analysis of gene expression data has evolved over the last
five years, and since the advent of ultra-high-volume gen-
otyping platforms, genome-wide association and linkage

scans using SNPs have also become feasible. The multiple
comparisons problem is central to the analysis of either
type of high-volume data. In 2001, Jansen and Nap [1]
proposed combining the analysis of the two technologies
in what he called "genetical genomics" to provide insight
into the genetic regulation of gene expression.

However, only quite recently have attempts been made to
relate the two technologies, first by Morley et al. [2] in a
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linkage scan for 3554 expressed genes in relation to 2756
autosomal SNP markers, and subsequently by the same
group [3] in a genome-wide association scan of 27 of the
expressed genes with the highest linkage in the first study,
in relation to >770,000 SNPs. (See also Schadt et al. [4]
and Stranger et al. [5] for similar analyses.) Independ-
ently, Tsalenko et al. [6] proposed a biclustering method
to visualize SNPs and the transcripts they regulate, using
an approach that is more visual than statistical. The mul-
tiple comparisons problem in such analyses (2.7 billion
comparisons in the association analysis) dwarfs those
from either genome-wide linkage or association analyses
of single traits or supervised cluster analyses of expression
data in relation to single outcomes.

Therefore, there is a need to develop new statistical meth-
ods to analyze all transcripts and genotypes together.
Here, we describe a novel hierarchical Bayesian approach
to the analysis of all possible pairs of associations and
linkages between expressed genes and SNP markers. We
demonstrate the results for chromosome 11 and we argue
that the method can be extended to cover the entire
genome and transcriptome.

Methods
Statistical model
Let Yij

n denote the expression of gene n in member j of
family i and let Gij

m be the corresponding SNP genotype at
marker m at location xm. For the means and covariances of
the expression traits, we adopted a generalized estimating
equations model of the form used by Thomas et al. [7]

E(Yij
n) ≡ μij

n = α0
n + Σm Anm Gij

m (1)

E(Cijk
n) ≡ χijk

n = β0
n + BnZijk(Xn), (2)

where Cijk
n = (Yij

n - μij
n)(Yik

n - μik
n) and Zijk(x) are the esti-

mated E(IBDijk(x)|Gi) at chromosomal location x for pairs
(j, k) from nuclear family i, based on the complete multi-
locus marker data. Xn is a latent variable for location of the
unobserved causal locus linked to expression trait n. For j
= k, V(Yij

n) = χn models the gene expression variance in Eq.
(2).

In Eq. (1), the regression coefficients Anm are modeled as a
mixtures of null values with probabilities 1-πnm and a nor-
mal distribution of non-null values with means αnm

expressed in terms of row and column effects:

Anm ~ (1 - πnm) δ (0) + πnm N(αnm, σ2), (3)

where

αnm = γ0
A + γ1

A I(xm ∈ Rn) + em
A + hn

A (4a)

logit(πnm) = γ0
P + γ1

P I(xm ∈ Rn) + em
P + hn

P. (4b)

The parameter γ1 distinguishes between cis and trans
effects, a cis interaction occurs when the chromosomal
location xm of SNP m is within the interval Rn, the align-
ment region for the gene expression probe n. The random
effects e and h are distributed as

(em
A, em

P) ~ N2(0, T) (5a)

(hn
A, hn

P) ~ N2(0, W) (5b)

and the γs, T, W have uninformative normal and Wishart
priors.

The regression coefficients Bn in the covariance model in
Eq. (2) are handled similarly, except that we assume each
trait has at most one region linked to it. (This is not essen-
tial to the method, because Eq. (2) could be extended to a
summation over multiple independent linkage regions,
but it would not make sense to offer all marker locations
simultaneously, since the IBD variables are highly corre-
lated from one location to the next.) Thus, we assume

Bn ~ N [γ0
B + γ1

B I(Xn ∈ Rn), τ2] (6)

Directed acyclic graph for the analysis modelFigure 1
Directed acyclic graph for the analysis model. Squares 
represent observed data, circles represent parameters or 
latent variables, triangles represent deterministic nodes.
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and pick a uniform prior on Xn; to simplify the calcula-
tions, we restrict Xn to the observed marker locations xm
and compute IBD probabilities only at these locations.
Thus, Xn has a discrete distribution with prior masses
inversely proportional to the local marker density, here
estimated simply as |xm+1 - xm-1|. The full model is repre-
sented in the directed acyclic graph shown in Figure 1.

We fitted the model using a Markov-chain Monte Carlo
(MCMC) approach, implemented in Matlab. Updates of

all parameters except the location parameters Xn values
involve standard Gibbs sampling from their respective full
conditional distributions, e.g., [α0

n|Yn, G, A], [β0
n|Cn, Z,

B], [Anm|Yn, Gm, α0
n, πnm, αnm, σ2], etc. The updates of the

X values are based on a Metropolis-Hastings procedure
with a random walk proposal. The sequence was started
ten times from several initial points chosen from an over-
dispersed prior around rough estimates. Half of the initial
samples are discarded and the second half is kept. The
number of kept samples, L = 4000, is chosen to be large

Gene expression × Genotype associations and residual linkage summaryFigure 2
Gene expression × Genotype associations and residual linkage summary. Left, Image describing the mean value of 
the association parameters πnm between the gene expression phenotypes (rows) and the SNP genotypes (columns). The matrix 
shows that the interactions are very sparse (dark spots), meaning that phenotypes are controlled by small number of SNPs, 
with no apparent concentration along the cis region delimited by blue lines. However, there exist some SNPs (columns) that 
seem to be correlated with a large set of phenotypes, potentially indicating a master regulatory region. Right, Image describing 
the posterior probability of the linkage locus after removing the association effect from the covariance.
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enough so that for all parameters of interest the variance
between sequences VB is comparable to that within
sequence VW, R < 1.10:

The rationale behind this convergence monitoring proce-
dure is described and justified by Gelman et al. [8].

Subjects, genotypes, and phenotypes
In order to keep the computation to a manageable level,
we restricted this analysis to the SNP genotypes and
expressed genes on chromosome 11, since previous anal-
yses by Morley et al. [2] had found evidence of both cis
and trans linkages at this chromosome. The final data set
thus had 116 SNPs and 189 expressed genes. IBD status
was estimated from the complete two-generation pedi-
grees (excluding grandparents) by a program written by
JM based on the Lander-Green algorithm [9]. All 378 sib
pairs (110 individuals) from the available 14 families
were included in the phenotype analysis.

Results
After convergence has been reached, the number of regres-
sion coefficients with nonzero coefficients in Eq. (1) is
very small. This is because in the mixture model employed
in Eq. (3), a large number of the probabilities are close to
0 (Figure 2).

Figure 2 also shows that each gene expression phenotype
is explained by relatively few genotypes that have a role in
regulating their expression. Table 1 lists, for the best pre-
dicted phenotypes, the SNPs included most frequently in
the model. Significantly, the top ranking phenotype,
HSD17B12 (217869_at), associated with SNP rs1453389,
is the same as the one reported by Cheung et al. as associ-

ˆ .R
L

L L

V

V
B

W
= − +1 1

(7)

Gene ontology on potential master regulatory regionFigure 4
Gene ontology on potential master regulatory 
region. Overrepresented GO terms by the phenotypes 
associated to the SNP rs916482 analyzed using FatiGO http:/
/www.fatigo.org/.

Potential master regulatory region around rs916482 SNPFigure 3
Potential master regulatory region around rs916482 SNP. Bottom plot is the cross-section of column 84 of Figure 1, 
describing the association between all phenotypes in chromosome 11 and SNP m = rs916482. The top plot shows the sign of 
dependence on the genotype. This SNP has a large number of associated genotypes, providing a strong indication of a master 
regulatory region.
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ated with another SNP in the same region (not included
in the GAW data set). Figure 3 shows that some SNPs in
chromosome 11, especially rs916482, are significantly
associated with more phenotypes than others. These SNP
may be within a master regulatory region of gene expres-
sion. The list of gene ontology terms that were over-repre-
sented in the list of its associated genes involved mostly
metabolic functions (Figure 4).

The covariance model [Eq. (2)] results are summarized in
the right panel of Figure 2, and the strongest linkage peaks
are listed in Table 2. This linkage is for the remaining var-
iation not explained by the association/means model [Eq.
(1)], and the peaks would correspond to unseen geno-
types that are in LD with a marker that was not used in the
association model. Thus, this explains in part why linkage
results are less compelling than the association ones.

Table 1: Top-ranking associations

Top SNPs used in the prediction

Phenotypea Probe R2 P(R2 > 0) SNP1 πnm SNP2 πnm SNP3 πnm SNP4 πnm

HSD17B12 217869_at 0.25 0.988 rs1453389b 1.00 rs916482 1.00 rs1425151 0.40 rs509628 0.28
C11orf10 218213_s_at 0.12 0.986 rs916482 1.00
AMPD3 207992_s_at 0.19 0.985 rs2029463b 0.81 rs948215 0.80 rs1157659 0.21 rs1491846 0.17
FEZ1 203562_at 0.12 0.984 rs2029463 1.00 rs2155076 0.20 rs948215b 0.11
ADM 202912_at 0.11 0.982 rs916482 1.00
STIP1 213330_s_at 0.11 0.981 rs916482 0.99 rs1319730 0.33
DDB1 208619_at 0.15 0.978 rs1530966 0.91 rs597345 0.54 rs1499511 0.10
FADS1 208964_s_at 0.14 0.974 rs1216592 0.85 rs1605026 0.38 rs591804 0.35
TPP1 200743_s_at 0.13 0.970 rs916482 0.94 rs1157659 0.14 rs902215b 0.14
RBM14 204178_s_at 0.10 0.966 rs916482 0.98 rs674237 0.10
HMBS 203040_s_at 0.13 0.963 rs86392 0.49 rs916482 0.47 rs1319730b 0.44 rs1945906 0.20
PPME1 49077_at 0.11 0.958 rs916482 0.82 rs2155001 0.16
CD44 204490_s_at 0.12 0.957 rs702738 0.34 rs916482 0.28 rs1319730 0.28 rs1453390b 0.17
NRGN 204081_at 0.10 0.946 rs2029463 0.93 rs961746 0.16 rs509628 0.15
NDUFS8 203190_at 0.11 0.944 rs86392 0.68 rs1319730 0.33 rs1945906 0.32
PSMD13 201232_s_at 0.09 0.923 rs916482 0.91 rs1319730 0.12

aPhenotypes ranked by most significant coefficient of determination, and some of their top associated SNPs ranked by average πnm.
bcis-acting interaction, defined as the SNP being within 10 MB of the phenotype probe alignment.

Linkage of residual gene expression variation after associationFigure 5
Linkage of residual gene expression variation after association.  Phenotypes ranked by most significant coefficient of 
determination in the covariance model, the posterior distribution of their locus position Xn, and its mode. The coefficient of 
determination and its significance are calculated from samples drawn around the mode (10%).
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However, for those phenotypes for which significant link-
age was found, the expression covariance increased with
the IBD status, especially in 208964_s_at.

Discussion
We have introduced a novel hierarchical Bayes model for
genetic control of gene expression. Our approach to deal-
ing with the multiple comparisons problem is to represent
the matrices of all possible SNP × expressed gene associa-
tion or linkage coefficients in terms of row and column
random effects, along with a spatial regression on the dis-
tance between the two. Although this allows inference on
specific pairs, we have greater interest in the variances of
the row and column effects, which reflect systematic ten-
dencies for SNPs to affect variable numbers of phenotypes
and for phenotypes to be differentially expressed. Our
mixture model also supports the possibility that the vast
majority of such associations or linkages would be truly
null, and allows separate estimation of both the probabil-
ity and magnitude of non-null tests. So far we have not
imposed any relationship between the parameters of the
association (means) and linkage (covariance) models, but
one might contemplate using the broad regions where

linkage is seen for a particular phenotype as a prior for
testing single-SNP associations with that phenotype.

The strongest gene-expression × SNP association reported
by Cheung et al. [3] on chromosome 11 also appeared in
our results as the most significant association, but with a
SNP close to theirs (their reported SNP was not included
in the data set). We also found evidence of at least one
SNP that appears to be linked to a large number of
expressed genes, suggesting the existence of master regula-
tory genes in that region.

We chose to restrict these analyses to a subset of genes and
SNPs on a single chromosome to test the feasibility of the
method. In principle the approach could be applied on a
genome-wide scale, since the computation time increases
linearly with m, n, sample size, and number of MCMC
samples. Generating 4000 MCMC samples required 6
hours on a 2.2 GHz single-processor machine. However,
one outstanding methodological challenge that would
have to be addressed before the approach could be
applied to dense SNP associations would be how to deal
with the multicollinearity problem; for this reason, we

Table 2: Linkage of residual gene expression variation after association

Phenotypea R2 P(R2 > 0) Samples @mode Mode [Xn] Pr [Xn = m]

208964_s_at 0.014 0.912 1749 rs2226844

202223_at 0.009 0.908 1526 rs1453390
220964_s_at 0.007 0.862 1412 rs647837
201432_at 0.005 0.821 1567 rs931811
201477_s_at 0.008 0.802 1492 rs1941817
204178_s_at 0.004 0.800 1548 rs2155076
202076_at 0.004 0.772 1668 rs681267
206067_s_at 0.002 0.749 1535 rs2029463
210364_at 0.003 0.718 1586 rs470719
203675_at 0.006 0.706 1659 rs1216592
205412_at 0.001 0.683 1585 rs470982
202418_at 0.001 0.679 1444 rs470719

aPhenotypes ranked by most significant coefficient of determination in the covariance model, the posterior distribution of their locus position Xn, 
and its mode. The coefficient of determination and its significance are calculated from samples drawn around the mode (10%).
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