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Abstract
It is believed that epistatic interactions among loci contribute to variations in quantitative traits.
Several methods are available to detect epistasis using population-based data. However, methods
to characterize epistasis for quantitative traits in family-based association analysis are not well
developed, especially for studying thousands of gene expression traits. Here, we proposed a linear
mixed-model approach to detect epistasis for quantitative traits using family data. The proposed
method was implemented in a widely used software program SOLAR. We evaluated the power of
the method by simulation studies and applied this method to the analysis of the Centre d'Etude du
Polymorphisme Humain family gene expression data provided by Genetics Analysis Workshop 15
(GAW15).

Background
With the ability to measure simultaneously thousands of
gene expression traits, understanding the causes of tran-
scriptional variation has been of great interest. Genetic
interactions, also called epistasis, have been shown to
affect gene expression phenotypes. For example, Brem
and Kruglyak [1] found that the genetic basis of transcripts
in yeast is more often likely to be polygenic rather than
monogenic and that in yeast epistasis effects are present in
more than 15% of transcripts. Therefore, it is essential to
analyze epistatic interactions between loci that contribute
to variations in gene expression traits.

Several statistical methods for studying epistatic interac-
tions between loci for quantitative traits using popula-
tions of unrelated individuals or from experimental
designs have been developed [2-6]. For quantitative traits
using family-based samples (related individuals), epi-
static testing has been incorporated into the variance-
component linkage analysis and implemented in the soft-
ware SOLAR [7]. However, epistatic detection on the basis
of the linkage analysis can only locate the two interacting
loci in wide confidence intervals and will have small
power for data sets with small sample sizes, such as in the
GAW15 (Genetic Analysis Workshop 15) CEPH (Centre
d'Etude du Polymorphisme Humain) data set, which only
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contains 194 individuals. In this situation, association-
based methods are expected to have higher power for
detecting epistasis. A variety of approaches [8,9] that focus
on association testing can be used to detect epistasis [3].
However, these are transmission-disequilibrium test
(TDT)-based methods, which also have lower power in
epistasis studies. Also, it is complicated to identify the best
statistical model for the joint effects of loci including their
interactions through model selection, particularly for ana-
lyzing thousands of gene expression traits for thousands
of markers.

In this paper, we have extended the association-based lin-
ear regression model [2,3] by adding a random polygenic
effect into the model to allow for familial data for epistasis
detection of quantitative traits. The proposed linear mixed
model was implemented in the widely used software pro-
gram SOLAR [7], which calculates significance levels for
each covariate, and performs covariate screening in the
model. We applied the proposed method to a subset of
the gene expression profiles in the CEPH data set as pro-
vided by GAW15.

Methods
Statistical methods
Based on the linear regression model of Cokerham and
Zeng [2] (also see Cordell [3]), we propose a linear mixed
model for detecting epistatic interactions for quantitative
traits using family-based data:

y = μ + a1x1 + d1z1 + a2x2 + d2z2 + iaax1x2 + iadx1z2 + idaz1x2 + 
iddz1z2 + Wβ + v + ε.

This model assumes diallelic marker loci and that y is a
normally distributed quantitative gene expression pheno-
type from related individuals, W is a vector of fixed covari-

ates such as sex effects, β is the corresponding vector of
coefficients, v is the random polygenic effect within a fam-
ily, the vector of polygenic effects in each family follows

multi-normal distribution N(0, 2A ) where A is the kin-

ship matrix and  is the variance associated with vectors

of polygenic effects, ai and di are the additive and domi-

nant effects, and xi and zi are dummy variables related to

the genotypes at the locus i. For example, for a diallelic
locus, we might set xi = 1 and zi = -0.5 for genotype BB, xi

= 0 and zi = 0.5 for genotype Bb, and xi = -1 and zi = -0.5 for

genotype bb, respectively. iaa, iad, ida, and idd are additive-

additive, additive-dominant, and dominant-dominant
interaction effects between the two loci, respectively, cor-

responding to epistatic interaction effects, and ε is the

residual error, following normal distribution N(0, ).

Significant interaction effects imply presence of epistasis.

To detect epistasis, for each gene expression phenotype,
we ran Model (1) in SOLAR for each pair of single-nucle-
otide polymorphisms (SNPs) in the selected candidate
regions (see Description of the data set for more details).
The number of tests for each gene expression phenotype
ranges from 6 to 820, depending on the marker density
and size of the candidate regions selected for the epistasis
search. For each gene expression phenotype, individual p-
values were adjusted using false-discovery rate (FDR)
under the general dependency assumption [10] within
each phenotype. FDR-adjusted p-values equal to or less
than 0.05 (FDR ≤ 0.05) are considered to be significant.

Simulation study

We simulated a data set based on the pedigree structure
from CEPH family data, which has 14 three-generation
families of 194 individuals. We considered two unlinked
diallelic markers in our analysis with allele frequency of
0.5. Marker genotypes for the grandparents were gener-
ated assuming Hardy-Weinberg equilibrium at each locus.
Genotypes for parents and children were simulated condi-
tional on their parental genotypes following Mendel's
law. As an example we evaluated the power (true negative
rate) and type I error (false-positive rate) of the proposed
method in identifying additive-additive epistatic effect iaa.

Phenotypes of each individual was generated based on the
Model (1), where a1 = 0.2, d1 = 0.01, a2 = 0.2, d2 = 0.01, iad

= ida = idd = 0, β = 0.1 (the vector W only contains sex),

. When evaluating power and type I error we

set iaa = 0.7 and iaa = 0, respectively. These values were cho-

sen based on the estimated values from analysis of
selected 27 traits in the CEPH family data. We plotted
receiver operating characteristic (ROC) curve by calculat-
ing specificity and sensitivity as we varied the nominal
threshold for determining the significant epistasis, where:

1 - specificity = (false positive)/(true negative + false posi-
tive)

sensitivity = (true positive)/(true positive + false negative).

Description of the dataset
The CEPH family data provided by GAW15 includes 3554
Affymetrix® gene expressions measured for 194 individu-
als from 14 three-generation CEPH families. In addition,
2882 autosomal and X-linked SNPs were typed for these
individuals.
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The software package pedStat as distributed in Merlin ver-
sion 1.0.1 [11] was used to check for Mendelian inconsist-
ence, genotyping proportions, and heterozygosity of
SNPs. SNP markers with minor allele frequencies less than
1% (equivalent to heterozygousity < 1.98%), markers
with greater than 30% missing genotypes, and markers
with only two of the three possible genotypes were
removed from analysis, which left 2436 SNPs for our anal-
ysis.

We limited our analysis to the 27 gene expression pheno-
types with the strongest linkage evidence of cis effects
(Table 1 from Cheung et al [12]). Their Table 1 listed one
to two peak markers for each phenotype, where a peak
marker is the SNP with the most significant finding in the
genome-wide association analysis (GWA) for this pheno-
type. Fourteen of the 27 gene expression phenotypes
exhibited cis regulation (with cis peak markers) by the
GWA analysis. For the phenotype PPAT there are two peak
markers that point to both cis and trans regulation for this
gene. For the remaining 12 phenotypes, the peak markers
are trans markers. In our study, for each of the 27 pheno-
types we selected a 15-Mb candidate region centered on
the target gene location. If a trans peak marker was identi-
fied in the GWA analysis, we also selected an additional
15-Mb candidate region centred on that marker. We ana-
lyzed the epistatic effects for all possible combinations of
the SNPs within the candidate regions.

Results
Simulated data
We calculated the ROC profiles for detecting interacting
SNPs using linear mixed Model (1). An ROC curve meas-
ures the trade-off between sensitivity (true-positive rate,
TPR) and 1 - specificity (false-positive rate, FPR) for differ-
ent cut-offs (Figure 1). Each threshold value results in a
sensitivity and 1 - specificity, which is represented by a
point on the ROC curve. For 100 simulated data sets, the
TPR starts at 0.82 and quickly increases to 0.95, with FPR
less than 0.11. When the nominal threshold is 0.05 for the
significant calls of epistasis, the power is 0.95 and the type
I error is 0.08 in identifying the additive by additive
epistasis effect iaa. In summary, simulation results indicate
the proposed linear mixed model has high sensitivity
(power) and specificity for detecting SNP-pair interaction
in family data for two unlinked markers.

CEPH family data
When applying the linear mixed model to the analysis of
the CEPH data, a total of six SNP pairs showed significant
epistatic interactions for three gene expression pheno-
types (Table 1). Two out of six significant epistatic effects
are from SNPs that are located on two regions from differ-
ent chromosomes. These two regions are corresponding
to the cis linkage region and the trans association marker.

These results show gene expression regulation cannot be
simplified as cis or trans regulation because both cis or
trans effects simultaneously contribute to variation in
message RNA expression level. The strong epistatic inter-
actions between SNPs could be interpreted as the strong
epistatic interactions between genes if the nearby genes
are in linkage disequilibrium (LD) with SNPs. For exam-
ple, the SNP rs1537638 is within the gene PTK7 (protein
tyrosine kinase 7), which is located on chromosome 6 and
shows significant interaction with the SNP rs1505694,
which is close to the gene ITGB1BP1 (integrin β1 binding
protein 1) on chromosome 2. This suggests that these two
genes might physically or genetically interact with each
other or be involved in the same biological process. In
fact, proteins encoded by these two genes are indeed
involved in the cell adhesion process, in which PTK7 is a
receptor tyrosine kinase transducing extracellular signals
across the cell membrane and ITGB1BP1 plays an impor-
tant role during integrin-dependent cell adhesion by
binding the β1 integrin cytoplasmic domain.

Conclusion and discussion
We have presented an association-based method for
detecting epistatic interactions for quantitative traits using
family data, and applied this method to the analysis of
gene expression phenotypes of CEPH family data pro-
vided by GAW15. When we applied the proposed method
to the CEPH data, we detected six SNP pairs that showed
significant epistatic interactions for 3 gene expression

Receiver operating characteristic (ROC) curves for 100 sim-ulated dataFigure 1
Receiver operating characteristic (ROC) curves for 100 sim-
ulated data.
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phenotypes among the 27 phenotypes analyzed. We study
the epistasis among genes by analyzing the interactions of
SNPs located in the corresponding genes. This kind of
epistasis detected from statistical tests does not necessarily
correspond to the classic model of epistasis. Strong epi-
static interactions among SNPs may not always indicate
biological interactions among genes.

Although we demonstrated the association-based linear
mixed-model approach for analyzing 27 phenotypes, the
method is mainly proposed for analyzing thousands of
phenotypes in genome-wide study. In general, one could
identify two interacting linkage regions (QTL intervals)
using two-dimensional genome linkage scan by allowing
a higher a false-positive rate. Or one could do stepwise
search of two interacting QTLs by identifying one primary
QTL and then searching for the secondary QTL condi-
tional on the primary locus being linked [13]. Once the
two candidate intervals (regions) have been identified, the
proposed linear mixed-model approach in this work
could be used for epistasis detection between SNPS.

The proposed linear mixed model could be implemented
in two steps by first regressing out the fixed effects (not
including genetic effects) and polygenic effects and then
detecting genetic interaction effects using predicted resid-
uals from the first-step analysis. This strategy is attractive
because of its flexibility in identifying the best statistical
model for the joint effects of loci and computational effi-
ciency for analyzing thousands of gene expression traits in
genome-wide study.
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Table 1: FDR adjusted p-values of significant epistatic effects detected under the full mode with the model selection between two loci 
located on different chromosomes in the analysis of the CEPH family data

Gene (location) SNP1 (location) SNP2 (location) a1a2 a1d2 d1a2 d1d2

ITGB1BP1 (2p25.1) rs1505694 (2p25.2) rs1537638 (6p21.1) 0.0291a 0.0092 1 0.3725
TM7SF3 (12p11.23) rs575030

11q23.3
rs725291
11q24.2

1 1 0.0341 0.0387

rs725291
11q24.2

rs1944819
11q24.2

0.0351 1 0.0341 1

rs725291
11q24.2

rs674237
11q24.2

0.0800 1 0.0341 1

rs753013
12p11.22

rs1492332
12q12

1 1 0.0341 0.4308

PPAT (4q12) rs1824965 (4q12) rs39068 (7p15.1) 1 1 0.1377 0.0351

aSignificant interaction effects are in bold.
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