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Abstract
The goal of this paper is to investigate the effect of using principal components as a data reduction
method for expression data in linkage analysis. We used 45 probes normalized using the Affymetrix
Global Scaling that had evidence of high heritability to estimate the first 10 principal components
(PC). A genome-wide linkage scan was performed on the 45 expression values and the 10 PCs using
2272 single-nucleotide polymorphisms. Our conclusions were: 1) PC analyses under-performed
the single-probe analysis for known signals; 2) the PC that best reproduced the single-probe
analysis was primarily composed of that probe; 3) no new signals were detected in the PC analysis;
4) no new pleiotropic effects were detected in the PC analysis.

Background
There is great interest in understanding genetic factors
related to variable expression of genes. Recently, several
studies have shown the first evidence of heritability of
mRNA between individuals [1-6]. By treating the expres-
sion phenotypes for each transcript (or probe) as a quan-
titative phenotype, a variance-components linkage
analysis could be used [1-6]. The expectation is to detect
linkage signals between the gene expression values and
genomic regions. As pointed out by William et al. [6], sev-

eral issues plague these studies, including the selection of
informative expression values. Principal components
(PC) is a dimension-reduction approach [7] and it has
been shown to be a valuable tool in linkage analysis of
correlated phenotypes [8]. Multivariate linkage analysis
has been shown to be useful in identifying genomic
regions with pleiotropic effect [9]. Given that the PC
approach is another way to combine information from
multiple phenotypes, it can be hypothesized that PC anal-
ysis might also be helpful in the identification of pleio-
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tropic effects. Because of the large number of expression
phenotypes in the Genetic Analysis Workshop 15
(GAW15) Problem 1 data set, we first selected the most
genetically informative phenotypes based on those with
high heritability estimates [10]. In this paper, we examine
whether combinations of correlated expression pheno-
types improved the linkage signals using PC and whether
the PC results suggest new pleiotropic effects.

Methods
Data
The GAW15 Problem 1 CEPH (Centre d'Etude du Poly-
morphisme Humain) data consisted of 196 participants
from 14 three-generation pedigrees with 14 individuals
per family, 4 grandparents, 2 parents, and 8 offspring.
Two hundred and seventy-six arrays including data on
3554 probe sets on the Affymetrix Human Focus Arrays
were provided by GAW15. These probe sets had been
selected as those with greatest inter-individual variability
from a total of 8500 probe sets [2].

Selection of phenotype subsets
To increase the number of informative phenotypes, we
excluded genes whose expression had little variation
(standard deviation ≤0.3) and low call rates (absent calls
>90%) across samples; 3306 phenotypes (probe sets)
remained. We further reduced the number by identifying
those that were most likely to be genetic based on herita-
bility estimates from a polygenic model, resulting in 45
phenotypes. Additional details of the selection process
can be found in de Andrade et al. [10].

Principal components
Principal-components (PC) analysis is a data reduction
technique in which each component is a linear combina-
tion of the phenotypes, each PC describing as much vari-
ability of the phenotypes as possible [7]. Because the 45
phenotypes are on a common scale, the decompositions
were made using the unscaled covariance matrix. The first
ten PCs accounted for 84% of the variance in the 45 phe-
notypes; 14 components would have been required to
explain 90% of the variance.

Genetic data
For a subset of subjects, including founders, we observed
a large number of missing genotypes. Recognizing that
missing data can impact identity-by-descent (IBD) estima-
tion [11] when there is linkage disequilibrium, we
reduced the extent of linkage disequilibrium between sin-
gle-nucleotide polymorphisms (SNPs) by removing SNPs
with r2 > 0.30 using ldSelect [12]. Of the 2756 markers
provided by GAW15, 2272 remained (mean spacing 1.2
cM). We then removed 2205 Mendelian inconsistencies
(0.5% of matings/genotypes) primarily by removing the
conflicting offspring genotypes. Multipoint IBD (MIBD)

sharing among pairs of relatives was calculated using
SIMWALK2 [13].

Quantitative trait linkage analysis
Prior to the linkage analysis, the 55 phenotypes (45
expression phenotype + 10 PCs) were normally trans-
formed using the empirical normal quantile transforma-
tion [14], which has been shown to have increased power
for variance-components analysis [15]. Variance-compo-
nents linkage analyses were performed using the S-Plus/R
library multic [16]. Sex was used as a covariate. We
assessed the 55 phenotypes for evidence of linkage and
considered "strong" linkage evidence as p < 10-9, which is
comparable to Table 1 in Morley et al. [2], and "moder-
ate" linkage evidence as p < 10-4 for comparison with the
single probe analyses. Finally, for the 45 expression phe-
notype models, we used a screening tool proposed by de
Andrade et al. [17] to estimate bivariate linkage results.
For those phenotypes that suggested strong bivariate link-
age using the screening tool, bivariate linkage analysis was
also performed [18].

Results
Figure 1 shows the relative weighting for the first five PCs.
For each component, the bar height represents the relative
influence of a particular probe. Also included is the gene
and gene location associated with each expression pheno-
type. The first PC is dominated by probe 209480.at, which
has a relative weighting of 0.979. This first probe was the
only component to show any increased linkage signal,
changing from a LOD of 9.0 to 10.7. One possible reason
for this increase is that the first PC is composed of two
phenotypes (209480.at, 204769.s.at) that are associated
with the HLA region on chromosome 6. Figure 2 shows
the linkage analysis for chromosome 6 using these two
phenotypes. Separate lines are drawn for the two univari-
ate analyses, the first PC, and the bivariate analysis using
these probes.

Table 1 compares our results with those of Morley et al.
[2]. They used the Affymetrix normalization method and
their multipoint genome-wide linkage analysis was done
using SIBPAL in S.A.G.E. [2]. Two of our six best linkage
signals for the single phenotype analysis agreed with Mor-
ley's; four, including the HLA region identified using the
PC approach, were not found by Morley. For the remain-
ing nine top phenotypes identified by Morley et al., we
were unable to compare the results because the specific
phenotypes were not part of our final 45.

Additional review of all the bivariate estimates using the
de Andrade screening approach showed only two new
areas to investigate that would not have been previously
flagged using a criteria of p < 10-9. The DDX17 gene signal,
identified by Morley using probe 208151.x.at (22q13.1),
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Table 1: Expression phenotypes with the strongest agreement and evidence of linkage for the Morley et al. [2], single-probe, and 
principal-components analyses

Morley et al. [2] Single probe Principal components

Gene Location Probe p-value LOD p-value Position (cM) PC LOD p-value Position (cM)

CH13L2 1p13.3 213060.s.at <10-10 11.6 <10-12 111.8 3 2.9 <10-3 112.2
ZP3 7q11 210910.at <10-9 13 <10-14 75.6 4 2.9 <10-3 64.3
PSPHL 7p11 205048.s.at <10-10 6.1 <10-7 64.3 4 2.9 <10-3 64.3
DDX17 22q13 208151x.at <10-9 5.9 <10-7 43.4 5 1.2 <10-2 47.7

UGT2B17 4q13 207245.at --------- 8.3 <10-9 62.3 2 7.1 <10-8 63.9
LRAP 5q15 219759.at --------- 8.1 <10-9 99 4 5.6 <10-6 97.7
HLA-DQB1 6p21.3 209480.at --------- 9 <10-10 36 1 10.7 <10-11 34.2
HLA-DPB1 6p21.3 201137.s.at --------- 8.8 <10-10 31.6 3 3.8 <10-4 38.3

The column "LOD" represents the maximum LOD scores in the chromosome where the genes are located with its respective p-values and 
positions in cM. The principal components results represent values at the same relative region as those found using the two other methods (single 
probe, Morley et al. [2]), even though the PC results are not composed of a single probe. The column "PC" lists the principal component that was 
used to find the maximum LOD score. The four bottom probes met our p-value < 10-9 criteria but did not appear on Morley's top 13 list. There 
were an additional 9 probes on Morley's list that were not in our top 45.

Principal component loadingsFigure 1
Principal component loadings. Loadings of the first five principal components along with the associated gene and chromo-
some location.
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was increased from p < 10-6 to p < 10-8 when used with
probe 207598.x.at (XRCC2, 7q36) in a bivariate analysis.
One area in chromosome 6 had a screening p-value of 10-

8 using probes 220386.s.at and 320.at but actual bivariate
analysis yielded a p-value similar to the stronger of the
phenotypes (10-6). Neither of these potential associations
were strongly grouped in the first 10 PCs. The Dead/H Box
17 (DDX17) is a member of the DEAD box (asp-glu-ala-
asp/his) protein family of RNA helicases that are involved
in diverse cellular functions including mRNA splicing,
ribosome assembly, translation initiation, mRNA stabil-
ity, and cell growth and division, and XRCC2 is essential
for the efficient repair of DNA double-strand breaks by
homologous recombination between sister chromatids.

Discussion
We compared the total number of LOD scores greater
than three across the genome for the first 10 PCs with the
regions identified by each of the 45 phenotypes and
found that in general, the PC analyses under-performed
the single probe set analysis for known signals. The com-
ponent that best reproduced the single probe set analysis
(Component 1) was primarily composed of that probe set
and also included another probe set that focused on that
region. No new signals were detected using PCs despite
the strong correlation between the probes. However, we
observed a strong linkage signal on chromosome 6 in the
HLA region when two probe sets from the HLA region
were analyzed as bivariate traits. The two other increases
in linkage signals from bivariate analysis that increased
our list of interesting areas were not picked up using PCs.

Conclusion
We observed that although PC has been suggested as a
potentially useful screening tool for identifying genes
linked to a cluster of highly correlated variables/pheno-
types, it was not helpful in identifying linkage signals in
this data set. Based on this analysis, other data reduction
techniques should be investigated.
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