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Abstract

The power of linkage analysis of a quantitative disease endophenotype was compared for the
following family selection designs: 1) Random samples: randomly chosen nuclear families,
2) “coronary artery calcification (CAC)” samples: selection of each nuclear family through a
proband with abnormally high levels of the simulated quantitative endophenotype, CAC, and
3) “MI” samples: selection of each nuclear family through a disease affected proband, in this case a
proband who had been simulated to have a myocardial infarction (MI) event.

We assessed the power to detect linkage to five loci (two pairs of epistatic loci and one locus with
an over-dominant allele) that were modeled as determinants of the simulated CAC levels. We did
this using a Haseman-Elston regression-based linkage analysis of the adjusted CAC levels that
considered each locus separately and then used a multiple regression extension of the Haseman-
Elston method in which we considered the allele sharing at two true epistatic loci simultaneously
and their interaction as possible factors related to the squared sibpair differences in adjusted CAC.

Based on comparison of the mean square root of the LOD scores, there was no one sampling
design that resulted in consistently greater power for these five loci. That is, we observed
significant locus-by-sampling-design interaction (p < 0.0001). We noted however, that the largest
average LOD score was observed for the epistasis between τ3 and τ4 (mean LOD > 1.8,
SE = 0.06) in the MI-selected samples and the CAC-selected samples.
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Background
It is well established that the selection of probands, or
sibpairs, with extreme phenotypes in small nuclear
families increases power over random sampling for
detection of linkage with quantitative trait loci [1,2].
Sibpairs selected so that their phenotypes are discordant
(i.e., one with a high value and one with a low value)
generally provide the largest gains in statistical power,
but such families require much larger samples for
phenotypic pre-screening.

We are usually interested in a quantitative trait because
of its association with some disease. Sometimes the
quantitative trait of interest is a clinical measure that
more accurately captures the extent of the disease than
the disease diagnosis itself, but often the quantitative
trait is a risk factor for some complex disease, and hence
a disease endophenotype. Thus, one would expect that a
linkage analysis of a quantitative trait based on sibpairs
in which there is at least one disease-affected individual
would be more powerful than an analysis based on
randomly selected sibpairs. Sung et al. [3] refers to such a
sampling design as asymmetrically ascertained sibpairs
(AASP) in a recent paper in which they developed
numerical methods for evaluating the power of a linkage
analysis of qualitative endophenotype using AASP.

In this paper we compared three methods for sampling
nuclear families for linkage analysis of a quantitative
endophenotype. The three methods we considered were
random selection of nuclear families, selection of nuclear
families through probands simulated as having the
complex disease, and selection of nuclear families
through probands who had high values of the disease-
associated quantitative endophenotype.

We analyzed the Problem 3 data provided by the Genetic
Analysis Workshop 16. The genotype and pedigree
structure of the individuals in the data set were provided
by the Framingham Heart Study. However, all pheno-
typic information was simulated based on the models
described in Kraja et al. [4]. The quantitative endophe-
notype we consider was called coronary artery calcifica-
tion (CAC), which is a major risk factor for the simulated
complex disease, myocardial infarction (MI). For our
analysis we considered the five single-nucleotide poly-
morphisms (SNPs) (denoted τ1, τ2, τ3, τ4, and τ5), which
had genotypes modeled to have direct effects on the
simulated CAC values and five SNPs (rs10044327
denoted M1, rs3776649 - M2, rs32609 - M3,
rs12152770 - M4, rs6887019 - M5) on chromosome 5.
Two pairs of these genes, τ1 with τ2 and τ3 with τ4, were
modeled to have epistatic effects on CAC values, whereas
τ5 was a major gene with an over-dominant allele for
high CAC. In addition to these five genes, three

covariates (age, simulated cholesterol values, and simu-
lated high-density lipoprotein (HDL) values) also were
modeled to affect CAC values. We considered the M1-M5
SNPs because these SNPs 1) were not involved in the
simulation of CAC or any of the CAC related traits (e.g.,
HDL and cholesterol (CHOL)), 2) were in Hardy-
Weinberg equilibrium, and 3) had minor allele frequen-
cies greater than 0.1.

Methods
Definition of the CAC phenotype
We first regressed the nonzero CAC values obtained at
age less than 60 on age (AGE), CHOL levels, and HDL
levels using all of the 6,476 subjects in each of the 200
simulations. The regression coefficients obtained for
each given simulation (bVAR; VAR = CHOL, HDL, and
AGE) were then used to obtain adjusted CAC values at
each of the three time points for each individual. The
procedures for adjusting CAC values at time t were
conducted by replicate as follows:
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Here, the notation VARt (for t = 1, 2, 3) refers to the value
for VAR = CAC, HDL, CHOL, and AGE recorded at visit t.
Then we averaged the three CAC adjusted values (CA60t)
to get the average adjusted CAC values (CA60), which
were the values we used in the linkage analyses through
out this paper.

Family-based sampling designs
In each case we only sampled unrelated nuclear families
for which there was marker data available on both the
parents and the siblings of the probands and for which
there was simulated CAC data for every sibling. The
families denoted as “Random” were randomly chosen.
The disease-ascertained families (MI) were obtained by
first selecting the disease affected probands, i.e., indivi-
duals simulated as having MI events and then including
all their siblings. The quantitative-trait-ascertained
families (CAC) were obtained similarly to the disease-
ascertained families except the probands were ascer-
tained for having adjusted CAC (CA60) values of no less
than 3,240 (the approximate 90th percentile for these
adjusted CAC values for all simulations). Parental
genotypes are also obtained for the allele sharing
identity-by-decent (IBD) calculation.

In each of the 200 replicates, there were on average about
71.0 unrelated nuclear families (SD = 5.8) with at least
one individual having an MI event, and on average about
unrelated 90.6 nuclear families (SD = 26.8) with at least
one individual having CAC value over 3240. We
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randomly selected 90 unrelated nuclear families from
each simulation so as to have approximately the same
number of sibpairs as in the selected samples. We
considered each nuclear family with s offspring as
providing s-1 “effective” sibpairs whose allele sharing
and phenotype differences have a low pairwise correla-
tion for the linkage analysis described below. In order to
have a sample of at least 600 effective sibpairs for our
analyses, we combined the data from four consecutive
simulations into one sample. We then have on average
678 (SD = 26.7) sibpairs from an average of 284 families
(SD = 9.7) in each of the 50 combined MI samples, on
average 698 (SD = 85.0) sibpairs from an average of 362
families (SD = 46.4) in each combined CAC sample, and
688 sibpairs in 360 families in each combined Random
sample.

Haseman-Elston linkageLinkage analysis
The Haseman-Elston regression-based method [5] was
implemented in SAS, which we refer to in this paper as
the “univariate” analysis. This method considers the
regression equation Y = a + bgIg. Here, Y denotes the
squared difference in CA60 in each sibpair and Ig
denotes the number of alleles shared IBD at the SNP g
(for g = τ1, τ 2, τ 3, τ 4, τ 5, M1, M2, M3, M4, and M5). The
Merlin software was used to extract the IBD values of all
of the sibpairs at these ten SNPs.

In order to reduce the correlation between squared
differences in CA60 in sibpairs from the same families,
we selected (s-1) sibpairs in each family with s offspring
by pairing the proband with each remaining offspring. In
the randomly chosen nuclear families the probands are
defined as the individuals having the smallest subject ID
numbers among the offspring in the families.

We then did multiple regression extension of the
Haseman-Elston method, which we refer to in this
paper as the multivariable analysis. Specifically, we
considered the regression equation Y = a + biIi +bj Ij +
bijIi Ij. Here, Y denotes the squared difference in CA60
and Ii and Ij denote the IBD at the SNP i and SNP j
respectively (for {i, j} = {τ1, τ 2}, {τ3, τ 4}, and the 10
pairs from {M1, M2, M3, M4, and M5}). This extension
has been proposed in the past to detect several
quantitative trait loci and epistasis [6,7].

Under the null hypothesis of no linkage, the regression
coefficients equal 0, i.e., bi = 0, and under the alternative
hypothesis, bi < 0. The usual regression t statistic
(estimated coefficient divided by its estimated standard
error) was used to test this hypothesis. These t values

were converted to LOD scores by setting LOD = t 2

2*ln10
if

t-value < 0 and LOD = 0 if t-value ≥ 0.

Evaluation of power
The power of the sampling approaches was evaluated by
comparing the average LOD observed in regression-
based analyses of each of the CAC-determining SNPs
separately and in combination. These were compared
with each other and also to the prediction interval
estimate for the average LOD under the null distribu-
tion. The empirical null distribution was obtained by
using the corresponding regression-based approaches on
the same samples to analyze the data on five SNPs (M1-
M5) believed to be unrelated to CAC. We decided to focus
on the mean and standard deviation of the LOD under
the null hypothesis (rather than obtain empirical critical
values for the LOD) because we had only 50 samples per
locus per sampling method being considered.

The mean LOD obtained in univariate linkage
analyses of M1-M5 varied from one SNP to the next
and from one sampling method to the next, with
significant sampling-method-by-SNP interaction.
Hence, we pooled the values across five loci for each
sampling design to estimate the mean LOD and then
used the results of the variance-components analyses to
estimate the variance of the estimated mean under the
null hypothesis and the variance of an average observed

LOD obtained using 50 samples. Using this method,
the estimated mean LOD = 0.27 and the 95%
prediction interval for the average LOD obtained
based on 50 Random samples at one SNP in the null
case would be from 0.00 to 0.76. Similarly, we estimated
the mean LOD = 0.35 and 95% prediction interval
from 0.03 to 0.66 for the CAC samples; the mean

LOD = 0.06 and 95% prediction interval from 0.01 to
0.10 for the MI samples.

We obtained a null distribution of the LOD for the
test of interaction by redoing these analyses on the ten
pairwise interaction terms generated by considering M1-
M5. In this case, the means and estimated prediction
interval of the average LOD based on 50 samples for
the test of interaction were as follows: 1) Random
samples: mean = 0.30, 95% prediction interval from 0.00
to 0.75; 2) CAC samples: mean = 0.50, 95% prediction
interval from 0.00 to 1.14; 3) MI samples: mean = 0.40,
95% prediction interval from 0.00 to 1.06.

We also can derive the asymptotic mean value of
LOD = 0.19 with asymptotic SD = 0.14 in the null

case if the assumptions of the regression analysis hold
(i.e., independent observations and no collinearity
between variables, normally distributed residuals). We
do this by noting that the quantity LOD * 2 * ln10 is
distributed asymptotically as a 50:50 mixture of 0 and a
half-normal random variable (i.e., |Z|, where Z has
standard normal distribution). The significance level
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associated with a LOD of 1.73 (or a LOD score of 3.0)
is 0.0001. Based on this asymptotic null distribution, our
prediction interval for the average LOD of 50 samples
is from 0.15 to 0.23.

Comparison of sampling designs
We applied two-way ANOVA to determine whether
sampling methods were a significant factor and whether
the effects of sampling method are the same across loci.
Upon observing a significant interaction, the averages of
the mean square-root-transformed LODs were compared
at each locus using the Scheffe test.

Results
In Table 1 we reported the mean of the LOD obtained
in the univariate linkage analyses and the mean of the

LOD obtained for the two sets of epistatic loci in the
multivariable analyses. We also report the grouping of
these means obtained using the Scheffe test. If two
means have the same grouping letters then they are not
significantly different at the 0.05 level.

We also included in this table the values of the genetic
variance attributable to each locus and each interaction.
These were calculated from the information on the
population allele frequencies and the mean effects of the
genetic components given in the Genetic Analysis
Workshop 16 Problem 3 answer [4]. According to

Haseman and Elston [5], the coefficients of the regres-
sion on squared difference on alleles shared IBD are
proportional to these genetic variances in samples of
unrelated randomly chosen sibpairs. Based on these
values, we would expect to observe: 1) lower average

LOD for τ1, τ3, and τ4, 2) higher average LOD for τ2,
τ5, and the τ1 τ2 interaction, and 3) the highest average

LOD for the τ3 τ4 interaction. Because the genetic
variance is determined by the joint distribution of the
genotypes as well as the effects of the genotypes, these
values apply only to the Random samples.

We have denoted those findings which under the
alternative are above (+) or below (-) our calculated
95% prediction intervals for SNPs unrelated to CAC for
the given sampling method. The values without any sign
are on the 95% prediction interval under the null
hypothesis. We noted that, with the exception of the
τ1τ2 epistasis, all of our observed average LOD are
significantly greater than expected using at least one of
the sampling methods for each of these CAC-determin-
ing SNPs and the τ3τ4 epistasis.

We did not show here the results of another multi-
variable analysis that included all the main effects of τ1,
τ2, τ3, τ4, and τ5 and the τ1τ2, τ3τ4 interactions. The
findings upon inclusion of all terms were closer to what
we would expect in light of the genetic variance
attributable to the individual genotypes. That is, the
highest observed mean LOD was observed for the τ3τ4
interaction (maximum mean LOD > 1.8 with both
CAC and MI sampling), and τ5 (maximum mean

LOD = 1.1 using randomly selected sibpairs), with
much lower mean LOD observed for τ1τ2 interaction
(maximum mean LOD = 0.25 with MI sampling),
τ1 (maximum mean LOD = 0.3 with CAC sampling),
τ2 (maximum mean LOD = 0.3 with CAC sampling),
τ3 (all less than 0.003), and τ4 (all less than 0.1).

Discussion and conclusion
We chose to focus on regression-based linkage analyses
because they would be computationally feasible for a
genome-wide analysis. Furthermore, the extensions to
multiple regression allows for us to effectively consider
situations where there is epistasis. Interestingly, the
multiple-regression linkage analysis approach showed
fairly good power to detect the complete epistasis
between locus τ3 and locus τ4 on the adjusted CAC.
These linkage methodologies all are based on the
detection of a relationship between phenotype differ-
ences in sibpairs and genotype differences in sibpairs.
Thus a sample of only sibpairs with large phenotype
differences, i.e., discordant sibpairs, would not be
appropriate for these analyses.

Table 1: The Scheffe grouping and the mean of LOD for the
five SNPs that determine CAC

SNP Genetic
variancea

Scheffe
grouping

Mean (+/-)b Sampling
design

τ1 A 0.87+ CAC
B 0.43+ MI

0 C 0.05 Random
τ2 A 0.64 CAC

A 0.71+ MI
1,250 B 0.01 Random

τ3 B 0.35 CAC
A 0.76+ MI

0 C 0.03 Random
τ4 B 0.58 CAC

B 0.60+ MI
0 A 1.09+ Random

τ5 B 0.48 CAC
C 0.24+ MI

10,000 A 1.33+ Random
τ1 τ2 epistasis B 0.13 CAC

A 0.28 MI
20,000 B 0.09 Random

τ3 τ4 epistasis A 1.82+ CAC
A 1.85+ MI

40,000 B 0.39 Random

aUsing the mean genetic effects and the population allele frequencies
given in Kraja et al [4]. b(+/-): Above (+), below (-), or on () the 95%
empirical prediction interval for the average LOD .
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We expected that both the selection based on quantita-
tive trait (CAC) and the selection based on disease (MI)
would show an increase in power over random
sampling. However, no one sampling method was
consistently the best or the worst. The purpose of
selected sampling is to increase the proportion of
families with at least one parent heterozygous for the
disease-predisposing allele. The allele frequencies of the
disease-predisposing allele are 0.5 for all of these loci
except the τ5 locus, where it is 0.2, and hence random
sampling results in a substantial proportion (0.4-0.75)
of families with at least one heterozygous parent. This
may account for our observation in detecting epistasis
that the selected samples (MI and CAC) resulted in
greater power than the random samples.

A very surprising result was our observation of signifi-
cantly higher than expected average LOD using
asymptotic theory for the five CAC-unrelated SNPs and
the significant between-SNP variance in LOD
observed for these five CAC-unrelated SNPs. Upon
taking this variance between SNPs into account, we
observe that several values observed under the alter-
native were not outside of the 95% prediction interval
for the null case. We conjecture that the mean LOD
varies considerably in the null case depending on how
the families are sampled, the distribution of the number
of siblings per family in the sampled families, and the
distribution of the quantitative trait.

It was reassuring to observe that the analyses based on
MI sibpairs had the same or greater power as the analyses
based on the CAC sibpairs. If abnormal levels of the
quantitative trait in the absence of the disease were not
harmful to one’s health, it might be difficult to ascertain
individuals with abnormal values. However, if the
disease is associated with the high values of this trait,
then in identifying a sample of individuals with the
disease, we would automatically have a large proportion
of individuals with the abnormal values.

We were quite surprised that the univariate linkage
analyses of τ5, the SNP with the highest variance between
genotypes (10,000), was not more powerful than that for
the other SNPs, which had much lower variance between
genotype. On the other hand, when we did a multi-
variable regression of squared differences on IBD alleles at
each locus and included the interaction terms for the two
pairs of epistatic SNPs, the magnitudes of the average

LOD for the individual SNPs are in the expected order,
with the largest average being observed for τ5, and lower
values for values for the τ1, τ3, and τ4. These findings may
indicate that there may be some association between the
number of alleles IBD at τ5 with the number of alleles IBD
at these other CAC-determining SNPs or the need to

follow up significant single-SNP linkage findings with
multivariable analysis.
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