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Abstract

Many autoimmune diseases share similar underlying pathology and have a tendency to cluster
within families, giving rise to the concept of shared susceptibility genes among them. In the Genetic
Analysis Workshop 16 rheumatoid arthritis (RA) data we sought to replicate the genetic
association between single-nucleotide polymorphisms (SNPs) identified in recent genome-wide
association studies (GWAS) on RA and five other autoimmune diseases. We identified 164
significantly associated non-HLA SNPs (p < 10-5) from 16 GWAS and 13 candidate gene studies on
six different autoimmune diseases, including RA, systemic lupus erythematosus, type 1 diabetes,
Crohn disease, multiple sclerosis, and celiac disease. Using both direct and imputation-based
association test, we replicated 16 shared susceptibility regions involving RA and at least one of the
other autoimmune diseases. We also identified hidden population structure within cases and
controls in Genetic Analysis Workshop 16 RA data and assessed the effect of population structure
on the shared autoimmunity regions. Because multiple autoimmune diseases share common genetic
origin, these could be areas of immense interest for further genetic and clinical association studies.

Background
Autoimmune diseases affect 5% of the human popula-
tion [1]. Although there is considerable heterogeneity
among these disorders, their manifestations are believed
to arise from immune-mediated attack against self-
antigens. Despite their clinical heterogeneity, recent
studies examining gene expression profiles in peripheral

blood mononuclear cells (PBMC) of individuals with
autoimmune disorders reveal common features that are
either shared within a disease group or among disease
groups as exemplified in rheumatoid arthritis (RA) [2] or
in systemic lupus erythematosus (SLE) [3]. The major
symptoms of RA arise through immune-mediated
destruction of peripheral joints; however, these features
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are typically accompanied by systemic complications
such as rheumatoid nodules and vasculitis. Immune-
mediated destruction is the central feature of autoim-
mune diseases like SLE, type 1 diabetes (T1D), multiple
sclerosis (MS), and celiac disease (CLD). Given the
similarities in the basic pathology of these autoimmune
disorders, it is not surprising to see autoimmune diseases
clustering within families, which leads to the hypothesis
of common autoimmunity genes being shared between
diseases. An example of such shared gene is Runx1,
which is shown to be associated with SLE, psoriasis, and
RA [4]. Increasing numbers of GWAS for autoimmune
disorders have enhanced the possibility of identifying
such shared autoimmune regions.

The goals of the present study are 1) to identify
population structure in Genetic Analysis Workshop
(GAW) 16 RA cases and controls, 2) to replicate the
genetic association in RA identified from recent GWAS
on six common autoimmune diseases [RA, Crohn
disease (CD), CLD, SLE, MS, and T1D], and 3) to
study the effect of admixture on associated regions.

Methods
After searching the PubMed database we identified
recently published 16 GWAS and other 13 candidate
gene association studies [5-28] on RA, CD, SLE, MS,
CLD, and T1D. SNPs which showed significant associa-
tion at a genome-wide “suggestive” threshold (p < 10-5)
were chosen for replication in GAW16 RA data. The
preselected threshold (p < 10-5) was chosen as “sugges-
tive” to control properly the family-wide type 1 error as
recommended by Duggal et al. [29] to adjust p-value to
control the family-wide type 1 error in genome-wide
association studies. The rationale for choosing this
threshold was to maximize true associations from the
GWAS. We performed an association analysis using
predefined quality control criteria (MAF ≥ 1%, SNP
missingness rate of ≤ 10%, and Hardy-Weinberg equili-
brium ≥ 0.001 in controls) and identified significant
SNPs for RA either by direct association using PLINK
[30] or by imputation using fastPHASE [31].

To identify the hidden population structure in cases and
controls, we estimated and compared the likelihood of
this data under different numbers of ancestral popula-
tions (k). We used STRUCTURE [32] for estimating the
best k separately for cases and controls. We identified
343 ancestry informative markers (AIMs) from two
previously published reports [33,34] that were available
in GAW16 RA data. These AIMs were used in both
estimating population structure and admixture propor-
tion in each individual, as well as correcting for the effect
of population substructure in genetic association. We

employed two different methods for controlling the
effect of population substructure, i.e., structured associa-
tion test (SAT) [35] with 10,000 permutations and
covariate-adjusted logistic regression. We also included
sex as a covariate in the logistic regression model;
however, it did not significantly affect the association
results and was excluded from the final model. To
corroborate the evidence of population structure we
performed principal-component analysis using EIGEN-
SOFT. We evaluated the statistical significance of each
eigenvector using Tracy-Widom (TW) statistics as
described by Patterson et al. and calculated the total
variation explained by the significant eigenvector [36].

Finally, we sought to replicate regions that showed
association signals across GAW16 data and at least one
of the GWAS. If the associated SNPs were not present
(either failed or were not genotyped in the study) in the
GAW16 data, we looked at the surrounding region in the
GAW data (100-kb region centered on the published
associated SNP). If any of the SNPs from these regions
showed significance at a replication threshold of
p < 0.05, we imputed this region using HAPMAP data
(60 unrelated CEU parents) and assessed association.

Results
We have identified substantial population substructure
in GAW16 RA samples. Figure 1A and 1B show estimated
structured likelihood probability of data for cases and
controls, respectively. The best fitted model for cases
favored the assumption of a two-population model
(ancestry proportion = 0.955, 0.045) and three-popula-
tion model for controls (ancestry proportion = 0.771,
0.115, 0.074). However, a combined case-control data
favored a three-population model (ancestry proportion =
0.528, 0.257, 0.215). For controls, the likelihood
probabilities for two-, three-, and four-population
models are similar and that for cases, the likelihood
probabilities for a two- and three-population model is
similar. We ran principal-components analysis on the
combined cases-control data and calculated TW statistics
[36] for the top 10 eigenvectors, and 4 significant
eigenvectors (p > 0.05) explained 23% of the variation
in the whole dataset. This suggests substantial popula-
tion structure within GAW16 data.

We initially selected 164 non-HLA associated SNPs from
16 recently published GWAS and 13 candidate gene
association studies (p < 10-5) to check for replication in
the GAW16 dataset. We found associated SNPs for SLE
(n = 49), CD (n = 39), T1D (n = 32), RA (n = 37), CLD
(n = 4), and MS (n = 9). Of these 164 SNPs, 92 SNPs
were found in the GAW16 data and evaluated by a direct
allelic association test. The remaining 72 SNPs were
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assessed by indirect association (by imputation). Of
these 164 SNPs, 29 were significantly replicated (p <
0.05). Nine of these SNPs replicated at p-values between
0.05 and 0.01, 11 were between 0.01 and 10-5, and 8
replicated at p < 10-5. Table 1 shows susceptibility loci
with the p-values for autoimmune diseases (CD, CLD,
T1D, SLE, and RA) identified from various GWAS. The
last two columns show association based p-values for the
same loci in the entire GAW16 RA data and p-values
adjusted for population admixture.

Discussion
There is a growing understanding that susceptibility to
autoimmune diseases is due to a complex interaction of
multiple genes and environmental factors, and many of
these may be shared among many autoimmune diseases.
In this analysis we attempted to replicate previously
identified associations in multiple autoimmune diseases
and inferred regions of shared autoimmunity between
GAW16 data and any other autoimmune disease. We did
not explore the HLA region in our study because this
region has already been extensively investigated and is a
very well know complex region of shared autoimmunity
among various autoimmune disorders [37,38].

GWAS have emerged as an effective tool to identify
common polymorphism underlying complex diseases.
One of the major sources of bias in GWAS is population
stratification, a variation of ancestry proportions
between cases and controls. This stratification can lead
to differences in allele frequency between cases and
controls unrelated to disease status, consecutively lead-
ing to an increased type 1 error [9]. We used 343 AIMs
and applied them to cases and controls separately to
infer population structure. We have demonstrated

substantial population substructure in both cases and
controls. In fact, we have identified more sub-structure in
controls than cases. Obviously, this would have major
impact if not corrected properly while performing
association studies.

We identified 16 different cytogenetic regions of shared
autoimmunity between GAW16 data and at least one of
the proposed autoimmune diseases. There were eight
shared regions with SLE (1p13, 2q32.2-q32.3, 6p21.32,
6q23, 8p21.3, 8p23.1, 22q11.21, 22q13.2), six shared
regions with CD (1p31, 3p21, 5p13, 6q27, 10q24, 19q13),
four shared regions with RA (1p13, 2q32.2-q32.3, 4q27,
9q33.2), four shared regions with T1D (1p13, 2q24, 2q33,
4q27), and one shared region with CLD (4q27). Interest-
ingly, PTPN22 (1p13), STAT4 (2q32.2-q32.3), and
KIAA1109 (4q27) were all associated with multiple
autoimmune disease. It should also be noted that SLE
shared the most susceptibility genes with RA, suggesting
common underlying pathologic processes perpetrated by
common loci. These associations are constant, robust, and
persisted after correcting for population structure. It is also
noteworthy to report that none of the nine associated SNPs
from MS are replicated in the GAW16 RA data.

However, our study was not an exhaustive replication with
RA and the five other autoimmune diseases because SNPs
were chosen using a predefined threshold (p < 10-5). It is
possible that SNPs that showed weak to moderate
association (0.05-10-5) with other autoimmune disease
could have been highly associated with RA. Also, the other
studies from which the list of 164 non-HLA SNPs were
selected do not all control for population admixture so it is
possible that we missed analyzing an important SNP in the
GAW16 data. We did not evaluate that possibility. It is
worth future research to look more exhaustively at SNPs

Figure 1
Likelihood of data under number of hidden populations (K) estimated separately for controls (A) and cases (B).
K denotes number of populations.

BMC Proceedings 2009, 3(Suppl 7):S31 http://www.biomedcentral.com/1753-6561/3/S7/S31

Page 3 of 6
(page number not for citation purposes)



found by GWAS and candidate gene analyses that do not
pass genome-wide significance but are significant at the
p < 0.05 level.

Conclusion
It has long been suspected that autoimmune diseases
may share common pathogenesis and susceptibility
genes, and several recent studies [4,5] support this
hypothesis. Identification of these shared regions can
help in identification of novel genetic pathways in
autoimmune disease causation, can increase under-
standing higher prevalence of different autoimmune
disorders in families, and may identify targeted regions
for gene therapy. Our study successfully identified 16
areas of shared susceptibility involving RA and other
autoimmune diseases. These can be further explored by

association and clinical studies to solve the conundrum
of shared autoimmunity amongst various autoimmune
diseases.
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Table 1: Replication of association in multiple autoimmune diseases

Corrected p-value

Chromosome
number

Cytogenetic
position

Gene SNP Physical
position

Associated
diseases

Uncorrected
GAW p-valuea

Adjusting
with

ancestry as
covariate in
a logistic
regression
model

SATb

1 1p31 IL23R rs11465804 67414547 CD 1.09 × 10-3 1.04 × 10-3 2.04 × 10-3

1 1p13 PTPN22 rs2476601 114089610 SLE, RA,
T1D

1.12 × 10-12 1.76 × 10-10 2.66 × 10-10

2 2q24 IFIH1 rs1990760 162949558 T1D 6.54 × 10-3 2.74 × 10-2 2.44 × 10-2

2 2q32.2-q32.3 STAT4 rs6752770 191681808 RA, SLE 7.00 × 10-3 1.36 × 10-2 3.36 × 10-2

3 3p21 MST1 rs3197999 49696536 CD 2.31 × 10-2 3.57 × 10-2 3.57 × 10-2

4 4q27 KIAA1109 rs13151961 123473107 Celiac T1D,
RA

4.81 × 10-2 2.74 × 10-2 3.74 × 10-2

5 5p13 PTGER4 rs4613763 40428485 CD 1.96 × 10-3 7.56 × 10-3 5.56 × 10-3

6 6q23 near TNFAIP3 rs6933404 138000928 SLE 3.13 × 10-4 2.01 × 10-3 3.01 × 10-3

6 6q23 near TNFAIP3 rs13192841 138008907 SLE 2.93 × 10-4 5.71 × 10-4 6.47 × 10-4

6 6q23 near TNFAIP3 rs12527282 138008945 SLE 2.28 × 10-4 3.37 × 10-4 2.27 × 10-4

6 6q23 near TNFAIP3 rs2327832 138014761 SLE 1.06 × 10-4 7.51 × 10-4 6.51 × 10-4

6 6q23 near TNFAIP3 rs602414 138053358 SLE 6.03 × 10-4 1.29 × 10-2 1.29 × 10-2

6 6q27 CCR6 rs2301436 167408399 CD 1.67 × 10-2 1.74 × 10-2 4.25 × 10-2

8 8p23.1 XKR6 rs11783247 10826285 SLE 4.50 × 10-2 1.76 × 10-2 5.77 × 10-2

8 8p21.1 C8orf12 rs7836059 11309574 SLE 8.87 × 10-3 1.36 × 10-2 6.78 × 10-2

8 8p21.3 C8orf13-BLK rs2736340 11381382 SLE 1.45 × 10-5 2.38 × 10-5 0
8 8p21.3 C8orf13-BLK rs13277113 11386595 SLE 3.46 × 10-6 5.69 × 10-6 0
8 8p23.1 BLK rs2618476 11389950 SLE 3.21 × 10-6 4.10 × 10-6 * c

8 8p23.1 BLK rs2248932 11429059 SLE 9.79 × 10-3 6.49 × 10-3 6.69 × 10-3

9 9q33.2 PHF19 rs1953126 122680321 RA 2.76 × 10-8 4.97 × 10-8 0
9 9q33.2 PHF19 rs1609810 122682172 RA 1.79 × 10-8 3.38 × 10-8 *
9 9q33.2 PHF19 rs881375 122692719 RA 2.27 × 10-8 4.55 × 10-8 0
9 9q33.2 PHF19 rs6478486 122695150 RA 1.79 × 10-8 3.38 × 10-8 *
9 9q33.2 near PHF19 rs3761847 120769793 RA 1.24 × 10-8 3.88 × 10-8 0
9 9q33.2 C5 rs2900180 122776861 RA 6.24 × 10-9 1.88 × 10-8 0
10 10q24 NKX2-3 rs11190140 101281583 CD 4.93 × 10-2 8.10 × 10-2 8.80 × 10-2

19 19q13 RSHL1 rs8111071 50999246 CD 5.91 × 10-5 1.66 × 10-4 0
22 22q11.21 UBE2L3 rs5754217 20264229 SLE 8.94 × 10-3 6.34 × 10-3 6.57 × 10-3

22 22q13.2 SCUBE1 rs2071725 41934258 SLE 2.23 × 10-2 1.83 × 10-2 1.57 × 10-2

aAllelic association test.
bStructured association test.
c *, Imputed SNP.
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