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Abstract

The phrase “mendelian randomization” has become associated with the use of genetic polymorphisms
to uncover causal relationships between phenotypic variables. The statistical methods useful in
mendelian randomization are known as instrumental variable techniques. We present an approach to
instrumental variable estimation that is useful in family data and is robust to the use of weak
instruments. We illustrate our method to measure the causal influence of low-density lipoprotein on
high-density lipoprotein, body mass index, triglycerides, and systolic blood pressure. We use the
Framingham Heart Study data as distributed to participants in the Genetics Analysis Workshop 16.

Background
In epidemiological studies, establishing and measuring
causal relationships is of primary importance. Unfortu-
nately, randomization, the most important tool for
unraveling causal relationships, is not generally avail-
able. Despite advances in study design and statistical
adjustment, the possibility of confounding and reverse
causation continues to be problematic. In recent years it
has been suggested that nature itself has already
performed a set of randomized experiments by assigning
genes according to Mendel’s laws [1]. These genes affect
the function or expression levels of specific gene
products, that in a cascade of cause and effect, eventually
lead to human disease. By utilizing the statistical concept
of an instrumental variable (IV), it may be possible to
use genetics to solve some of the problems that have

plagued epidemiology for decades. The goal of this
approach, known as “mendelian randomization,” is not
to detect genetic factors of disease, but rather to use
genetic factors of disease to uncover the causal relation-
ships between phenotypes.

Figure 1a shows a graphical depiction of a situation in
which IV methods might be useful. Suppose that we
wished to assess the relationship between X and Y.
Because U is unmeasured, there is no way of estimating
the strength of this relationship using ordinary epide-
miological methodology such as linear regression. In
simplistic terms, the logic behind MR is that G can only
affect Y by affecting X. Therefore, an association between
G and Y is best explained by a causal relationship
between X and Y. In IV methods, we look only at how
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that part of X which is influenced by G affects Y. In order
to do this we need to make at least the following three
assumptions [2]:

1. G is not independent of X.
2. G is independent of U.
3. G is independent of Y given U and X.

Only Assumption 1 is testable. Assumptions 2 and 3 must
be accepted or rejected using subject-specific knowledge. It
is well known that there are many potential violations of
these conditions when using MR. Such problems include:
linkage disequilibrium, pleiotropy, population stratifica-
tion, and canalization [2]. However, by careful selection of
polymorphisms, many of these concerns may be mini-
mized. A well done MR study has assumptions that cannot
be tested, but these assumptions are easier to believe than
those involved in a direct assessment of the relationship
between X and Y.

IV techniques are well known tools in econometrics, and
there is an extensive body of literature discussing the
properties of various estimators. Popular methods of
estimation include two-stage least-squares regression
and limited information maximum-likelihood estima-
tion [3]. These methods generally impose the assump-
tion of linearity of the effects. Traditionally, a Wald type
confidence interval of the form “estimate ± error” is
used. However, a growing body of literature has shown
that if the instrument is weak, this may result in
confidence intervals of incorrect size [4]. A weak
instrument is one which violates or comes close to
violating Assumption 1 above. One approach to solving
this problem is to invert tests that are robust to weak
instruments [5]. We have adopted this approach below.
The motivation for our approach is similar to that of
G-estimation.

With few exceptions to date, discussions of MR have
focused on population data. However, there is a large
amount of existing family data, and there are well known
advantages to family-based studies. For example, MR may
provide the ability to check for mendelian errors, and it
may provide protection against population stratification
[6]. In this paper we suggest an approach to MR which is
broadly applicable to family data.

We apply this approach to measure the causal relationship
between low-density lipoprotein levels (LDL) and the
variables high-density lipoprotein (HDL), triglycerides
(TG), body mass index (BMI), and systolic blood pressure
(SBP) in the Framingham Heart Study data as distributed
to participants in the Genetic Analysis Workshop 16
(GAW16) as Problem 2. For our IV we use single-
nucleotide polymorphisms (SNPs) from the 50 k data
set, which are in or near the LDLR (OMIM 606945) and
APOB genes (OMIM 107730), because they have direct
influences on LDL. We make some additional comments in
justification of our approach in the discussion.

Methods
Data description
We utilized the 50 k genotype data for all three cohorts
of the Framingham Heart Study data. Data were
obtained and used in compliance with the data use
agreement and the Case Western Reserve University
Institutional Review Board. We found only one SNP
(rs2738457) in the LDLR gene in this data set. To select
SNPs from APOB we compared the available SNPs to
those analyzed in an independent sample by Benn et al.
[7]. There were five SNPs shared in common between the
two studies. We chose the two SNPs from Benn et al. [7]
that had a p-value less than 0.001, appeared to be acting
in an additive manner, and were shared in common with
the Framingham Heart Study 50 k SNP data. These SNPs
were rs1042031 and rs679899.

LDL was calculated using the Friedewald equation. In
order to deal with possible heterogeneity of effect and
make use of the multiple visits, each of the phenotypic
observations was stratified by age at examination. The
following strata were used: 0-29, 30-44, 45-60, and over
60 years of age. An approximate year of birth for each
individual was calculated as the mean difference
between the approximate exam date and the age at
exam. All phenotype variables besides age and approx-
imate year of birth were log-transformed for analysis in
ASSOC (S.A.G.E. v5.4.1). In all analysis, the mean
centered year of birth, age, and sex were used as
covariates. SBP was adjusted by adding 10 to those on
treatment [8].

Statistical method
Suppose there are K pedigrees and nk individuals in each
pedigree. Suppose also that xk and yk are nk × 1 vectors
representing the variables X and Y in Figure 1. Also, Gk is a
nk × t matrix representing coded genotypes, and Ak and Bk
represent matrices of covariates for xk and yk respectively.

Let x x x= ⎡
⎣

⎤
⎦1

T
K
T T

… and let y and G be defined

Figure 1
Typical instrumental variable setup. G is an instrument.
X is a possible cause for Y. U is all unmeasured confounders.
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analogously. We assume the following two linear structural
equations:

x A G ek k x k g xk= + +ββ ββ (1)

y B x ek k y k xy yk= + +ββ ββ . (2)

Here, exk and eyk are (possibly) correlated error terms. A
variance-component model is assumed to describe the

covariance structure Var yk
T

xk
T T

e e( ) . The variance-com-

ponents model is described in some more detail below.

Note that bxy is the parameter that represents the causal
effect size. Suppose that we wish to test the hypothesis
H0 : bxy = bH. The basic approach we suggest here is to
form a new trait

r y xk H k k Hβ β( ) = − . (3)

Combining Eq. (3) with Eqs. (2) and (1), we obtain

r B x e

B A G e e

k H k y k xy H yk

k y k x k g xk xy H y

β β β

β β

( ) = + −( ) +

= + + +( ) −( ) +

ββ

ββ ββ ββ kk

k y k x xy H k g xy H yk xk xy H

k y

= − −( )( ) + −( ) + − −( )( )
=

B A G e e

B

ββ ββ ββ

ββ

β β β β β β

−− + −( ) +∗A G ek x k g xy H rkββ ββ β β ,

(4)

for suitably defined ββ x
∗ , and erk. Under the model

assumptions, r(bH) is independent of G given the
covariates if and only if bxy = bH. Hence, we may test the
hypothesis H0 : bxy = bH using some form of a family-based
genetic association test. The test may be recomputed along
an entire grid of values. Those values that are rejected at
some alpha level lie outside the confidence interval. If the
association between G and x is not statistically significant,
then in most cases the confidence interval will cover the
entire real line. For finite samples it is also possible that the
confidence interval is the null set.

We have chosen to use the method implemented in the
program ASSOC of S.A.G.E. (v5.4.1) to test for genetic
association. This family-based test of association between
markers and a continuous phenotype developed by George
and Elston [9] allows for familial correlations by simulta-
neously estimating residual and multifactorial (polygenic,
familial and marital) variance components. It is assumed
that the data can be transformed via the George-Elston
transformation into a multivariate distribution. ASSOC
maximizes the likelihood conditional on the genotype
values given the assumptions above. We supplied guesses
as to the beginning and end points of the confidence
interval for bxy. We then ran ASSOC iteratively over a grid
of values for bH between the end points. Values for which

the maximization algorithm clearly did not properly
converge were not used. We used cubic spline interpolation
as implemented in the R function “splinefun” to find the
boundaries on the confidence interval and the point
estimate. As a point estimate we used the maximum
p-value.

We also used ASSOC to assess the causal relationships
directly. We have labelled this method as “regression”
below, although it is not strictly a linear regression
because the familial correlation is accounted for using
the same variance-component model described above.
The R2 values reported below are calculated as

ˆ ˆββ ββg
T

g g xSS2 2 where S x xx k ik iN
2 21

1 1= −( )− ∑ ,,
and

S G G G Gg k i
T

k ik iN
2 1

2 1= −( ) −( )− ∑ , ,,
. Here N1 and

N2 are the total number of non-missing observations
on x and G, respectively.

Results
As mentioned in the Introduction, we chose to look at
the effect of LDL on a number of other variables (see
Figure 1b). The first step in this analysis is to look at the
effect of the chosen SNPs on LDL levels. There is good
evidence for genetic association for all four age groups
(Table 1). However, the chosen SNPs explain only a
small proportion of the overall genetic variance.

There is little that can be said based on the IV analysis
alone. In all cases the 95% confidence intervals are quite
large. Only 1 out of 16 intervals exclude 0. It is interesting
to note that in a greater-than-expected number of cases, the
signs of the IV estimates and the regression estimates are
the same (Table 2). The observed negative correlation
between LDL and HDL is to be expected because HDL is
thought to help rid the body of LDL. However, if this is the
case, the causal arrow runs from HDL to LDL. The
regression estimates relating HDL to LDL and TG to LDL
appear to change with age. However, the regression
estimates should not be overanalyzed because of potential
confounders and reverse causation.

Discussion
It may be difficult to define exactly what is meant by
“causal effect” in a system that is evolving dynamically.

Table 1: Genetic association with LDL

Age group (yr) Statistical significance R2 for SNPs

0-29 0.005382 1.0%
30-44 8.75 × 10-6 0.6%
45-60 0.010954 0.3%
>60 0.011759 0.7%
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One-time interventions in such a system will have
different effect sizes depending on the time since
intervention. Eventually the system will settle back into
an equilibrium state. We take the causal meaning of our
results to reflect more upon the equilibrium state of the
system than the instantaneous response to intervention.
For example, our estimate of the causal effect of log
[LDL] on log [TG] is 1.770 in the 0-29 age group.
Essentially we interpret this to mean that if we could
raise an individual’s log [LDL] by one log [mg/dL],
eventually the system would settle into a new state with
log [TG] raised by about 1.770 log [mg/dL].

Every MR study should be accompanied by a biological
argument that certain assumptions are met. Our argu-
ment is that polymorphisms on or near the APOB and
LDLR genes will probably only affect the other pheno-
types through their effect on LDL. This is because the
APOB protein is one of the principal components of
LDL. Similarly, LDLR is known to bind to LDL, allowing
for endocytosis. Of course, the above claim could be
disputed. The purpose of this study is mainly to
demonstrate a statistical approach, and we do not
necessarily claim that the results have a strong biological
justification for Assumptions 2-3.

One concern that we believe is particularly relevant is
whether the chosen markers are in linkage disequili-
brium with polymorphisms that modify the function or
the plasma levels of the LDL protein. For example, the
causal effect size of LDL on HDL could differ depending
on certain polymorphism in the APOB gene. In this case,
Assumption 3 would be violated. While this would
invalidate our estimates of effect size, it may not

invalidate the qualitative conclusion. That is, if the
confidence interval does not include 0, we still have
evidence that LDL is causally related to HDL.

With regard to the selection of SNPs as instruments, we
have several comments. First, we caution that in this type
of study, the polymorphisms used should be justified a
priori. Searching through a large number of possible
instruments for statistical significance then performing
IV analysis within the same data is not an acceptable
procedure. Second, the selected polymorphisms should
have biological justification as an IV. That is, it should
meet Assumptions 1-3 mentioned in the introduction.
Third, if there are no polymorphisms that explain a
reasonably high percentage of the variance in the cause,
then IVs are unlikely to be useful. Our IV estimates have
very large confidence intervals. We believe this is
ultimately a result of instruments that are weak
predictors of LDL levels.

Conclusion
In this paper we suggest a method for performing MR
in family data. While we have chosen to use the
program ASSOC to implement this method, nearly any
statistical test for association between a quantitative
trait and a set of polymorphisms could be used.
We used ASSOC because it allows for familial correla-
tions while using information all individuals in the
family. If concerns about population stratification are
raised, a more robust test such as the transmission-
disequilibrium test could be used. Our approach is
robust to the problem of weak instruments in the sense
that it should maintain correct coverage rates. However,

Table 2: Instrumental variable and direct regression estimates of effect size

Effect←Cause Age (yr) Regression Estimate (95% CI)a IV Estimate (95% CI)b

BMI←LDL 0-29 0.102 (0.074, 0.130)c 0.319 (-0.143,1.454)
30-44 0.102 (0.085, 0.120) 0.065 (-0.293,0.401)
45-60 0.054 (0.035, 0.073) 0.452 (-0.011,1.925)
>60 -0.008(- 0.039, 0.023) 0.156 (-0.574,1.406)

SBP←LDL 0-29 0.014 (-0.004, 0.032) 0.008 (-0.303,0.313)
30-44 0.024 (0.013, 0.036) 0.026 (-0.187,0.247)
45-60 0.013 (-0.001, 0.028) 0.369 (-0.035,2.268)
>60 -0.009(- 0.036, 0.017) 0.085 (-0.730,0.963)

HDL←LDL 0-29 -0.151 (-0.195, -0.107) -0.185(- 1.103,0.865)
30-44 -0.122 (-0.149, -0.096) -0.014(- 0.397,0.393)
45-60 -0.106 (-0.136, -0.077) 0.250 (-0.552,2.800)
>60 0.085 (0.031, 0.139) -0.712(- 3.072,0.118)

TG←LDL 0-29 0.428 (0.331, 0.524) 1.770 (0.500,6.230)
30-44 0.313 (0.257, 0.369) -0.029(- 1.073,0.806)
45-60 0.252 (0.193, 0.311) 0.954 (-0.767,4.892)
>60 -0.178 (-0.273, -0.083) 1.038 (-0.755,7.229)

aThe mean centered year of birth, age, and sex were used as covariates.
bThe mean centered year of birth, age, sex and cholesterol treatment were used as covariates.
cBold indicates statistical significance at a = 0.05.
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it will still have low power. Perhaps the biggest
limitation to MR is the need for polymorphisms
that explain a large percentage of the variation in a
given trait.
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