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Abstract

Cardiovascular diseases are associated with combinations of phenotypic traits, which are in turn
caused by a combination of environmental and genetic factors. Because of the diversity of pathways
that may lead to cardiovascular diseases, we examined the so-called intermediate phenotypes,
which are often repeatedly measured. We developed a penalized nonlinear canonical correlation
analysis to associate multiple repeatedly measured traits with high-dimensional single-nucleotide
polymorphism data.

Background
Cardiovascular diseases (CVD) are associated with combina-
tions of phenotypical traits, such as increased bloodpressure,
blood glucose, or cholesterol, and many other risk factors.
These traits are in their turn caused by a combination of
environmental and genetic factors. Because of the high
diversity of pathways thatmay lead to CVD, our focus lies on
the so-called intermediate phenotypes that often have a
much stronger relationship with genetic markers. The
disadvantage of this approach is that there are many such
intermediate phenotypes, and moreover they are often
repeatedly measured in patients, e.g., lipid profiles, blood
pressure, and glucose. We developed a new method to
associate multiple repeatedly measured phenotypical traits
with high-dimensional single-nucleotide polymorphism

(SNP) data, and illustrate its use with the data sampled in
the Framingham Heart Study, as provided by the Genetic
Analysis Workshop 16 (GAW16).

We have previously shown that penalized canonical
correlation analysis (CCA) can be a valuable tool to
study the association between two high-dimensional sets
of variables [1,2]. It penalizes the two datasets such that
it finds a linear combination of a selection of variables in
one set that maximally correlates with a linear combina-
tion of a selection of variables in the other set, thereby
making the results more interpretable.

Although CCA accounts for the correlation between
variables within the same set, it neglects the longitudinal
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nature of the variables. Furthermore, it does not deal
well with categorical data, such as we encounter when
dealing with SNP data. We adapted CCA such that it
captures the correlation between the multivariate long-
itudinal responses instead of the correlation between
separate measurements within one set. The set with SNP
variables is transformed via optimal scaling [3], such that
each SNP variable is transformed into one continuous
variable, which captures the measurement characteristics
of the SNP. Hereafter, this set is penalized such that the
number of suspected SNPs is reduced to an interpretable
number. Using these approaches, we are able to extract
groups of SNPs that have a high association with
multiple longitudinal traits.

Methods
Data
Data from the Framingham Heart Study containing
information about common characteristics that contri-
bute to CVD, together with genetic data of about
550,000 SNPs were provided by the GAW16. Three
generations were followed over a period of several years,
when at regular time-points characteristics of CVD were
measured.

In our analysis we focused on individuals of the
offspring generation because the repeated measurements
in these individuals were taken under approximately
similar conditions; we considered the measurements of
total cholesterol, high-density lipoprotein (HDL) cho-
lesterol, triglycerides, and blood glucose, each measured
four times. Furthermore, we analyzed the data of the
Affymetrix 50 k chip containing 50,000 SNPs. The
offspring generation exists of 2,760 individuals, with at
most four measurements taken every 7 to 12 years. We
only took the individuals (over the age of 17) for whom
both phenotypical data and genetic data were available
(2,584), and discarded the individuals with more than
5% missing SNP data (6) and individuals who attended
only one exam (26). Six individuals with extremely high
measures for one of the four traits were also deleted from
further analysis.

Monomorphic SNPs and SNPs with a missing percentage
of 5% or more were deleted from further analysis.
Remaining missing data was randomly imputed once
based only on the marginal distribution of the SNP in all
other individuals; no assumptions were made about the
variation in the imputation. We were primarily inter-
ested in common SNP variants, so we grouped SNP
classes with less than 1% observations with a neighbor-
ing SNP-class; i.e., we grouped homozygotes of the rare
allele together with the heterozygotes, if there were less
than 1% homozygotes.

This research was in accordance with the Helsinki
Declaration of Human Rights, compliant with the data
use agreement for the Framingham Heart Study, and was
approved by the local medical ethics committee of the
Academic Medical Center Amsterdam (date of decision,
1 April 2008).

Penalized nonlinear CCA
Consider the n × p matrix Y, containing p (measured
trait) variables, and the n × q matrix X containing the q
(SNP) variables, obtained from n subjects. CCA captures
the common features in the different sets by finding a
weighted linear combination of all the variables in one
set that correlates maximally with a weighted linear
combination of all the variables in the other set. These
linear combinations are the so-called canonical variates
ω and ξ, such that ω = Yu and ξ = Xv, with weight vectors
uT = (u1, ..., up) and vT = (v1, ..., vq).

Because CCA neglects the longitudinal nature of
the variables, each repeatedly measured trait is summar-
ized into two measures, one representing the slope
and one the intercept for each individual (see next
section). Moreover, CCA cannot deal with categorical
variables, therefore each SNP variable is trans-
formed into one continuous variable via optimal
scaling [3]. Each of the transformed variables are
restricted to the measurement characteristics of the
SNP. That is,
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where a is wildtype, b is heterozygous, and c is
homozygous. This restriction indicates that the effect of
the heterozygous form of SNP j always lies between the
effect of the wildtype and homozygous genotype. To
make the results more interpretable, the SNP set is
penalized using univariate soft-thresholding. The cano-
nical variates are optimized via the following alternating
least squares algorithm (see Figure 1):

1. Standardize Y and X.
2. Set k ← 0.
3. Assign arbitrary starting value ω1.
4. Estimate ω, ξ, v and u iteratively as follows

Repeat
(a) Obtain the transformed matrix X* by minimizing the

distance between ω̂ k and X. That is, c j j
t

j j
t k= −( ) ( )G G G1 ω

j = 1,2, ..., q, with Gj the n × gj indicator matrix for variable j

with gj the number of categories of variable j. Restrict c j to

obtain c j
∗ . Then x cj j j

∗ ∗= G . Standardize X*.
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(b) Compute ˆ ( )v k with univariate soft-thresholding,
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2 j = 1,2, ..., q (with f+ = f

if f > 0 and f+ = 0 if f ≤ 0.) and normalize ˆ ( )v k .

(c) k ← k + 1

(d) ˆ ˆ* ( )ξ k kv← −X 1

( e ) Compu t e ˆ ( )u k wi t h l i n e a r r e g r e s s i on ,

ˆ ˆ( )u k t k t= ( )−
Y Y Y

1
ξ and normalize ˆ ( )u k .

(f) ˆ ˆ ( )w uk k← ∗Y

until ˆ ( )u k and ˆ ( )v k have converged.

Summary method for the repeatedly measured
phenotypes
The four traits (total cholesterol, HDL cholesterol,
triglycerides, and blood glucose levels) are log-trans-
formed. Because of the linear nature of the repeated
measures, for each subject i its repeatedly measured trait

Figure 1
Penalized nonlinear canonical correlation analysis. Association between repeatedly measured phenotypes and a large
number of SNPs. The longitudinal measured phenotypes are summarized into two measures, one representing the intercept Yi

and one the slope (Ys). Each SNP variable (X) is transformed into one continuous variables (X*). Hereafter penalized
canonical correlation analysis is performed, and only SNPs that contribute to the association are selected.
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variables can be summarized into two measures, an
intercept (b0) and a slope (b1); after correcting for the
treatment effect of cholesterol-lowering drugs, according
to the following model, at age t: yit = b0i + bliAge + b2itrt +
b3itrt* Age + eit, where y is the trait and trt = 0 if no
treatment was taken and trt = 1 if cholesterol treatment
was taken. Hereafter, the sex-effect was removed from
the eight newly obtained intercept and slope variables.
The new dataset Y contains eight variables, two for each
of the four phenotypical measures.

Model optimization
Optimization of the penalty parameter is determined via
k-fold cross-validation. The weight vectors u and v and
the transformation functions τj per SNP variable are
estimated for different penalties in the training set and
validated in the validation set.

Instead of determining the penalty l, for interpretation it
is easier to determine the optimal number of SNP
variables. The optimal number of variables are obtained
when the mean difference between the canonical
correlation of the training and the validation set is
minimized, i.e.,
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with v̂ j− and û j− the weight vectors estimated for the
training sets X −

∗
j and Y−

∗
j in which subset j was deleted

and the validation set X j
∗ transformed following the

transformations of the training set X −
∗
j .

Results and discussion
To decrease computation time, the number of SNP
variables was reduced, using univariate analysis. Each of
the four intercept variables were separately associated
with the SNPs set using the optimal scaling method.
Only the intercept variables were used because the
absolute correlation between the intercept and slope of
the same phenotype was at least 0.89. For each intercept
variable, the top 10% of SNPs with the highest weights
were selected for further analysis, i.e., SNP variables that
received a high weight for any of the four intercept
variables were selected. This resulted in a data set with
12,682 SNP variables.

Next we performed penalized nonlinear CCA; ten-fold
cross-validation was performed to determine the optimal
number of SNP variables. The optimal number of
variables was the number where the canonical correla-
tion of the validation set was closest to the canonical
correlation of the training set. Figure 2 shows the effect
of the number of selected SNP variables on the difference

in canonical correlation of the validation set and the
training set. It shows that as the number of selected
variables increased, the difference in canonical correla-
tion also increased, which caused the predictive perfor-
mance of the selected variables to decrease.

If the number of variables is very large, then there is a
high probability that a random pair of variables has a
very high correlation by chance. To identify a canonical
correlation that was large by chance only, a permutation-
analysis on the validation sets was performed. We
permuted the canonical variate ξ (SNP variables) and
kept the canonical variate ω (phenotypical variables)
fixed, then the difference in canonical correlation of the
permuted validation sets and the training set was
determined (Figure 2).

Furthermore, we performed an additional simulation
test in which we associated the actual set of phenotypical
variables with a set of permuted SNP variables. For each
SNP variable the observations were randomly distributed
over the different subjects, then a ten-fold cross-valida-
tion was performed (see Figure 2).

The difference in canonical correlation obtained from
the permuted data and the simulated data were small
(Figure 2), while the difference in the canonical
correlation of the real data was smaller, indicating that
the simulation set only contained noise data and the
results of the real data were larger than would be
expected by chance. Figure 2 shows a decreasing trend as

Figure 2
Determination of the optimal number of SNP
variables.

BMC Proceedings 2009, 3(Suppl 7):S47 http://www.biomedcentral.com/1753-6561/3/S7/S47

Page 4 of 6
(page number not for citation purposes)



the number of SNPs decreases, with a minimum at 25
variables. Although it appears that this trend could
decrease even further by minimizing the number of
SNPs, we decided not to investigate this to avoid the
absence of important SNPs in the final results. We
performed penalized nonlinear CCA on the whole dataset,
obtaining the 25 SNP variables given in Table 1. The
canonical correlation of this model was 0.29.

In Tables 1 and 2 the loadings (correlation of each
variable and their respective canonical variates) and
the cross-loadings (correlation of each variables with
their opposite canonical variate) show how the
variables were associated with each other. The selected
SNPs were highly associated with the HDL intercept
(cross-loading: 0.1419), and had a lower association
with the other variables, especially the slope variables.
SNP rs3764261 highly associated with the phenotypical

variables, while all the other SNPs had comparable
cross-loadings.

Conclusion
Our penalized nonlinear CCA is able to identify SNPs
that are associated with repeatedly measured phenoty-
pical markers. In this study two important SNPs (rs328
and rs3764261) were found that are located close to or
in a gene that has been reported to be associated with
HDL concentrations [4].

Although we chose to model the repeated measurements
with a linear random effects model, more complex and
more flexible models can be easily incorporated in our
penalized nonlinear CCA. Besides the first pair of
canonical variates, different pairs can be obtained using
the residual matrices of the preceding canonical variate
pairs.

The family structure in this study was ignored. McArdle
et al. [5] noticed that ignoring the family structure
mainly affects the type I error rate and not the bias of the
point estimate. Because we focused on the point
estimates, we expect no major changes when family
structure is considered.

List of abbreviations used
CCA: Canonical correlation analysis; CVD: Cardiovascu-
lar diseases; GAW16: Genetic Analysis Workshop 16;

Table 1: Selected SNPs with associating loadings

ID Chromosome Position Gene symbol Loadings Cross-loadings

rs4951003 1 203728690 0.2421 0.098
rs12402938 1 207845978 CAMK1G 0.061 0.0754
rs9729179 1 230240796 DISC1 0.1858 0.0936
rs10803210 1 242600084 C1orf100 0.0707 0.0781
rs11885449 2 33464415 LTBP1 0.1054 0.0831
rs13385681 2 100453326 NMS 0.0414 0.0758
rs10176715 2 227898611 MFF 0.0347 0.0762
rs9844754 3 136017093 EPHB1 0.0614 0.0763
rs17207005 5 85475541 0.1796 0.0929
rs7700813 5 95166015 0.0811 0.0811
rs1570932 6 90066030 GABRR2 0.0732 0.0798
rs4723563 7 36723988 AOAH 0.1399 0.0833
rs328 8 19864004 LPL 0.1609 0.0849
rs7837540 8 57341761 0.0736 0.0792
rs1458118 8 87785399 CNGB3 0.0104 0.0718
rs11997551 8 99204613 POP1 0.1036 0.0749
rs721917 10 81696304 SFTPD 0.0217 0.0783
rs11028690 11 3615868 ART5 0.0425 0.0761
rs1943781 11 101740351 BIRC2 0.0467 0.0797
rs2024490 12 95823495 NEDD1 0.0931 0.0826
rs1008628 14 104793771 BRF1 0.0495 0.0836
rs3764261 16 55550825 (near CETP) 0.8674 0.1699
rs7237072 18 66934371 0.2573 0.1016
rs17756963 19 15963980 LOC646610 0.0506 0.0809
rs8122970 20 19155712 SLC24a3 0.0628 0.0833

Table 2: Phenotypes with associating loadings

Phenotype Loadings Cross-loadings

Cholesterol intercept 0.0547 0.0161
Cholesterol slope -0.0485 -0.0143
HDL intercept 0.4718 0.1389
HDL slope -0.0736 -0.0217
Triglyceride intercept -0.2072 -0.061
Triglyceride slope 0.0952 0.028
Glucose intercept -0.1979 -0.0583
Glucose slope 0.1413 0.0416
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HDL: High-density lipoprotein; SNP: Single-nucleotide
polymorphism.
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