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Abstract

The objective of this study was to detect interactions between relevant single-nucleotide
polymorphisms (SNPs) associated with rheumatoid arthritis (RA). Data from Problem 1 of the
Genetic Analysis Workshop 16 were used. These data consisted of 868 cases and 1,194 controls
genotyped with the 500 k Illumina chip. First, machine learning methods were applied for
preselecting SNPs. One hundred SNPs outside the HLA region and 1,500 SNPs in the HLA region
were preselected using information-gain theory. The software weka was used to reduce colinearity
and redundancy in the HLA region, resulting in a subset of 6 SNPs out of 1,500. In a second step, a
parametric approach to account for interactions between SNPs in the HLA region, as well as HLA-
nonHLA interactions was conducted using a Bayesian threshold least absolute shrinkage and
selection operator (LASSO) model incorporating 2,560 covariates. This approach detected some
main and interaction effects for SNPs in genes that have previously been associated with RA (e.g.,
rs2395175, rs660895, rs10484560, and rs2476601). Further, some other SNPs detected in this
study may be considered in candidate gene studies.
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Background
Rheumatoid arthritis (RA) is a chronic disease with
known autoimmune pathophysiology. RA is a heritable
condition and association studies have already identified
a genomic region in chromosome 6 (the HLA region).
While this represents progress in elucidating genetic
contributions to RA, much is still unknown about the
underlying genetic causes, and there is plenty of evidence
that there exist other genes affecting disease risk, both as
major effects and in epistasis [1]. Genome-wide associa-
tion studies (GWAS) of diseases and complex traits have
become a major focus of research in human genetics.
GWAS may provide robust results for acquiring knowl-
edge on the underlying genetic behavior of RA. One of
the most difficult challenges of GWAS is how to deal
with the large p, small n problem, arising when the
number of variables considered (p) is much larger than
the number of subjects (n). The problem becomes
particularly difficult when one seeks to estimate single-
nucleotide polymorphism (SNP) by SNP interactions.
One approach for efficiently handling high dimensional
GWA data consists of two steps: 1) reducing dimension-
ality by filtering non-informative markers, and
2) applying a more sophisticated model to quantify
the effect of the selected SNPs and their interactions.
Information gain and the wrapper procedure are exam-
ples of machine learning that have shown benefits over
linear regression for Step 1. These methods are easy to
implement and may deal with crude, noisy, and
inconsistent information. They alleviate redundancy,
colinearity, and the assumption of multivariate normal-
ity, making them appealing in genomic studies. The
function that relates covariates to observations is
unspecified, providing more flexibility in the model.
Further, they may deal with non-additive effects, which
are of interest in genetic epidemiology. Some drawbacks
to these methods exist: information gain may not
completely remove colinearity in the system and the
wrapper procedure it is too computationally demanding
to use on a large number of records and SNPs. Hence, a
second step is necessary. A large variety of methods have
been previously proposed for Step 2. Here, we propose a
novel method that is able to reduce colinearity and make
a higher shrinkage to zero than other methods for less
relevant SNP and SNP × SNP effects.

The Genetic Analysis Workshop 16 (GAW16) provides
an opportunity for testing novel methods, such as those
proposed above, on a well characterized dataset, to
compare results and interpretations, and to discuss
current problems in genetic analysis. The aim of this
study was to identify additional disease susceptibility
loci in the GAW16 RA data in a two-step approach: first,
reducing the number of SNPs to be tested through

machine learning algorithms; second, identifying inter-
actions or epistatic effects between HLA and non-HLA
SNPs using a Bayesian threshold LASSO model.

Methods
Data
Data from the North American Rheumatoid Arthritis
Consortium (NARAC) provided by the GAW16 were
used in the analyses. The initial batch consisted of 868
cases and 1,194 controls genotyped with the 500 k
Illumina chip (545,080 SNPs). Further description of the
initial data can be found in Plenge et al. [2]. Local
institutional review board (IRB) approval was obtained.

Quality control
SNPs showing >2% missing genotypes were excluded
(64,041). Monomorphic SNPs were omitted (1,920).
SNPs with minor allele frequency <0.05 that did not
show association with the disease through a Fisher’s
exact test (p < 0.001) were also omitted (47,190).
Finally, SNPs that deviated from Hardy-Weinberg
equilibrium (p < 0.0001) in the controls were discarded
(11,835). The number of SNPs remaining in the analysis
was 420,094.

Stage 1: Preselection of significant SNPs using
machine learning
Information gain or entropy theory
Pre-selection of informative SNPs to be included in
Stage 2, and substantially reduce the feature space, was
performed using the information gain or entropy
reduction criterion [3]. The entropy of the probability
distribution of a discrete random variable y is defined as:

H y y y
y A

(Pr( )) Pr( ) log Pr( ),= −
∈
∑ 2

where A is the set of all states that y can take, the
logarithm is on base 2 to mimic bits of information, and
we take 0 log 0 = 0. Here, y refers to case and control
phenotypes. For each SNP, the data set was divided into
three subsets corresponding to the three possible
genotypes (aa, Aa, or AA). For each genotype k,
there are Nk
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gain for each SNP s (s = 1, 2,...,p) is the difference in
entropy of the probability distribution (the reduction of
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where N = ++ −N Nk k . At this point, SNPs were divided in
two groups based on whether they were in the HLA
region or somewhere else along the genome (non-HLA
SNPs). The HLA region was defined starting at HLA-F
(29,799,096 to 29,803,052) and extending to HLA-DPB1
(33,151,738 to 33,162,954). The 100 non-HLA SNPs
with the highest information gain were selected to test
for interactions with HLA SNPs in Stage 2. The HLA SNPs
that passed to Stage 2 were selected as follows.

Selection of independent SNPs in the HLA region on chromosome 6
The most relevant SNPs in this region were selected using
the wrapper procedure [4]. This procedure aims to reduce
redundancy and colinearity in a feature subset. The HLA
SNPs with an information gain above the 99.65
percentile (approximately the top 1,500 SNPs) were
considered as candidates, and were included in this
wrapper. This method involves searching through all
possible combinations of SNPs in the data to find an
‘optimal’ subset of SNPs that best classify the phenotype
outcome (binary: case or control), using an attribute
evaluator and a search method. The attribute evaluator
used was the naïve Bayesian classifier, with a bidirec-
tional hill-climbing search method. The naïve Bayesian
evaluator can be described as follows:

Given an observed phenotype ywith genotype k1,...,kp, the
best prediction (classification decision) is given by class
value Y (case or control) such that Pr(Y = y|K1 = k1, ..., Kp =
kp) is maximum. Applying Bayes’ theorem gives
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The prior probability of the phenotype, PR(Y = y), can be
estimated from the training data, and the PR(K1 = k1, ...,
Kp = kp) cancels out when the odds of class membership
are calculated. Then, assuming that the genotypes are
conditionally independent, the probability of each
genotype conditioned to the observed phenotype can
be estimated as:
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We chose a five-fold cross-validation scenario in which a
different list of SNPs was generated in each fold.
Therefore, SNPs that appeared in three or more folds
were extracted and included in Stage 2. The wrapper
approach was implemented using the weka software [5].

Stage 2: Selection of significant SNPs and interactions
To identify interactions among SNPs in the HLA region and
between an HLA SNP and a SNP elsewhere in the genome,

we applied a Bayesian version of the LASSO (least absolute
shrinkage and selection operator) [6]. The LASSO con-
strains the sum of absolute values of the regression
coefficients, leading some coefficient estimates to be exactly
zero. This can be viewed as a feature selection, and is
suitable for quantifying estimates, as well.

The binary nature of the outcome (control vs. case) was
taken into account by applying a Bayesian threshold
LASSO BTL model, a modification of the Bayesian LASSO
[7], the performance of which will be tested for the first
time in this study. The traditional threshold model [8]
postulates that there is an underlying random variable
called liability (l) that follows a continuous distribution,
and that the observed dichotomy is a result of the position
of the liability with respect to a fixed threshold:
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Here, the liability was taken as the response variable. The
BTL can be described as:

λλ ββ= + +μ1 X e, (1)

where l is the vector of liabilities for all individuals, b are
the LASSO estimates with their respective incidence matrix
X, and, as a modeling choice, e was considered the vector
of residuals independent and identically distributed as
e ~ ( , )N e0 2σ . In accordance with tradition, we fixed the
threshold to be 0 and the residual variance to be 1;
alternate choices result in the same model.

Let Xb = XMbM + XHLA-HLA bHLA-HLA + XHLA-nonHLA bHLA-

nonHLA, where bM is the vector of major effects, bHLA-HLA

corresponds to the vector for interaction effects between
HLA SNPs, and bHLA-nonHLA is to the vector for interaction
effects between HLA and non-HLA SNPs, with XM, XHLA-

HLA, and XHLA-nonHLA being the corresponding incidence
matrices. These incidences matrices were constructed such
that each major effect for SNP j was codified as x j

M = (-1,
0, or 1) for aa, Aa, and AA, respectively. Interactions were
codified as follows: for each SNPj we defined two
covariates, x j

1 and x j
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coded as 1 (0, otherwise). Then, for each SNPj × SNPk
interaction, we set four covariates, x x xjk

mn
j
m

k
n= ⋅ for m, n

equal to 1 or 2.

Eq. (1) for individual i can be written as:

λ μ β βi j
M

M

j

w

HLA HLA
mn

HLA HLA
mn

n

x i x i
j j k j k

= + ( ) +
=

+

− −
=

∑ ∑( ) ( )
1

100

1

2

mmk j

w

j

w

HLA nonHLA
mn

HLA nonHLA
mx i

j j k

== +=

− −

∑∑∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

1

2

11

( ) β nn

nmkj

w

ie
====

∑∑∑∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
1

2

1

2

1

100

1

.

BMC Proceedings 2009, 3(Suppl 7):S63 http://www.biomedcentral.com/1753-6561/3/S7/S63

Page 3 of 5
(page number not for citation purposes)



In a fully Bayesian context, the LASSO estimates (b) can
be interpreted as posterior modes estimates when the
regression parameters have independent and identical
double-exponential priors [6]. Park and Casella [7]
proposed using a conditional Laplace prior specification
for the LASSO estimates of the form:
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Samples from posterior distributions of those estimates
were drawn from the Gibbs sampling algorithm
described in Park and Casella [7], with a chain length
of 100,000 samples discarding the first 50,000 as
burning, after checking convergence.

Results
Information gain was calculated for each SNP across all
chromosomes. The total entropy of the data was 0.98,
which is the maximum information gain that a feature
(i.e., SNP) could provide. The highest information gain
was found in the HLA region on chromosome 6, as
expected, with a maximum value of 0.19 for SNP
rs2395175. Thirteen other SNPs in this region had an
information gain higher than 0.10. The highest infor-
mation gain outside of the HLA region was 0.017
(rs2476601 on chromosome 1). Within the HLA region,
472 out of the 1,323 SNPs had information gain in the

99.65 percentile. The wrapper procedure selected 6 out
of the 472 SNPs.

Therefore, 2,560 covariates (100 main effects, 4 ×
6

2

⎛

⎝
⎜

⎞

⎠
⎟

HLA-HLA interactions, and 4 × 6 × 100 HLA-non HLA
interactions) were introduced in the BTL model. As
expected, the posterior means of a large amount of
effects were shrunk to zero. The main effects or epistatic
basis functions with at least 80% of the posterior
distribution either higher or lower than zero, are
shown in Figure 1. Among those, the LASSO included
the main effects of the two HLA SNPs with the highest
information gain (rs2395175 and rs660895). The inter-
action with the largest effect was that between SNPs
rs10484560 (HLA region) and rs2476601 (chromosome
1). These SNPs belong to genes that were previously
reported as part of one of the most important interac-
tions for RA [9]. Further, 4 out of the 21 non-HLA SNP
shown in Figure 1 were in genes that had been previously
related to RA, such as rs3181096 or rs10514911 [10,11].

Conclusion
A pre-screening stage seems necessary in genome-wide
association studies to reduce the large p, small n
problem. The machine learning approach (information
gain + wrapper) used in this study detected the most
important known region associated with RA and reduced

Figure 1
Major effects and interaction basis functions detected by the Bayesian threshold LASSO model. Allele or
interaction alleles are specified. The allele for the HLA SNPs is specified first in the interactions.
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the number of SNPs in both the HLA region and across
the genome. In a second stage, the BTL model selected
covariates of major and epistatic effects strongly asso-
ciated with RA, some of them already known. The major
effects of the two HLA SNPs with highest information
gain did appear in the top 27 covariates, showing their
importance on the liability to RA.

Shi et al. [12] used a LASSO model on the simulated data
from the GAW15 Problem 3. However, they used a
different pre-screening method and a non-Bayesian
version of the LASSO. The Bayesian counterpart provides
a measure of the reliability of the estimates. Because data
used in the GAW16 RA problem are real data, the
accuracy of the proposed approach cannot be tested
immediately. However, the results in this study can be
compared to the results generated by other methods
applied to the same data, and also with past and future
analyses. Further, SNPs found in this study with
unknown previous function might act as markers of
candidate genes in future research. Proving the benefits
of these methods over others widely used in the field is a
challenge for the future.
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