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Abstract

Background: Plants have played a special role in inositol polyphosphate (IP) research since in plant seeds was
discovered the first IP, the fully phosphorylated inositol ring of phytic acid (IP6). It is now known that phytic acid is
further metabolized by the IP6 Kinases (IP6Ks) to generate IP containing pyro-phosphate moiety. The IP6K are
evolutionary conserved enzymes identified in several mammalian, fungi and amoebae species. Although IP6K has
not yet been identified in plant chromosomes, there are many clues suggesting its presences in vegetal cells.

Results: In this paper we propose a new approach to search for the plant IP6K gene, that lead to the identification
in plant genome of a nucleotide sequence corresponding to a specific tag of the IP6K family. Such a tag has been
found in all IP6K genes identified up to now, as well as in all genes belonging to the Inositol Polyphosphate
Kinases superfamily (IPK). The tag sequence corresponds to the inositol-binding site of the enzyme, and it can be
considered as characterizing all IPK genes. To this aim we applied a technique based on motif discovery. We
exploited DLSME, a software recently proposed, which allows for the motif structure to be only partially specified
by the user. First we applied the new method on mitochondrial DNA (mtDNA) of plants, where such a gene could
have been nested, possibly encrypted and hidden by virtue of the editing and/or trans-splicing processes. Then we
looked for the gene in nuclear genome of two model plants, Arabidopsis thaliana and Oryza sativa.

Conclusions: The analysis we conducted in plant mitochondria provided the negative, though we argue relevant,
result that IP6K does not actually occur in vegetable mtDNA. Very interestingly, the tag search in nuclear genomes
lead us to identify a promising sequence in chromosome 5 of Oryza sativa. Further analyses are in course to
confirm that this sequence actually corresponds to IP6K mammalian gene.

Background
Plants have played a special role in inositol polypho-
sphates research ever since the first inositol polypho-
sphate (inositol hexakisphosphate) was described about
90 years ago in plant seeds [1]. Interest in inositol poly-
phosphates dramatically increased about thirty years ago
when the role of inositol 1,4,5-trisphosphate (Ins(1,4,5)
P3) in mobilization of Ca2+ from intracellular stores was
discovered [2]. It is now clear that inositol polypho-
sphates are an important class of signaling molecules
controlling disparate cellular functions. Inositol hexaki-
sphosphate (IP6, also known as phytic acid) is the most

abundant inositol polyphosphate in eukaryotic cells. It is
a major component of plant seeds representing 0,1 – 1%
of its dry weight and 60 – 80% of total phosphate con-
tent [3].
Significantly, IP6 is the precursor of a novel class of

more anionic inositol polyphosphates, the inositol pyro-
phosphates, in which the fully phosphorylated IP6 ring
is further phosphorylated to create high-energy pyro-
phosphate groups. The best charateryzed inositol pyro-
phosphates are the diphosphoinositol pentakisphosphate
(IP7 or PP-IP5) and the bis-diphosphoinositol tetraki-
sphosphate (IP8 or [PP]2-IP4), with one and two pyro-
phosphate group, respectively [4].
Inositol pyrophosphates are important cellular mes-

sengers that control a wide range of cellular function,
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including endocytosis [5], apoptosis [6], telomere length
[7], DNA recombination [8]. The high energy pyropho-
sphate bond of IP7 can directly donate the beta phos-
phate to proteins defining a new kind of protein
phosphorylation mechanism [9], recently proposed to
represent a novel post transductional protein modifica-
tion (serine pyro-phosphorylation) [10].
Since their discovery in the early 1990s, inositol pyro-

phosphates have been found in all eukaryotic cells ana-
lyzed, from yeast to mammalian neuron, along with the
widespread conservation of the enzymes responsible for
their synthesis.
The mammalian enzymes responsible for IP7 synthesis

are called IP6 Kinases (IP6Ks); they are able to convert
IP6 plus ATP to IP7 and ADP [11]. It is now known
that IP6Ks belong to a superfamily of Inositol Polypho-
sphate Kinases (PFAM accession number PF03770), that
evolved from a common ancestor, comprising IP6Ks,
Inositol Polyphosphate Multikinase (IPMK) possessing a
broad range of substrates and IP3-3Ks that specifically
convert I(1,4,5)P3 to I(1,3,4,5)P4. Although IP6K has not
yet been identified in plant genomes, the presence of
pyrophosphate IP7 has been demonstrated also in vege-
tal organisms, both in monocotyledonous and in dicoty-
ledonous plants [12,13]. Furthermore, the conversion of
IP6 to IP7 has been detected in Arabidopsis cells and
leaf tissue in the presence of ATP, demonstrating IP6-
kinase activity in plant extracts [14]. These findings,
together with the observed high conservation through
the evolution of IP6K, strongly suggest the presence of
this enzyme in vegetal cells. Therefore, IP6K enzyme
was searched in plant genomes by homology based
methods, but all studies have failed to reveal its pre-
sence. Two IPMK proteins (called AtIPK2a and AtIPK2b
in Arabidopsis thaliana) have been identified so far
[15,16]. These two enzymes contribute to inositol
1,3,4,5,6-pentakisphosphate(IP5) production in Arabi-
dopsis, but do not show any inositol pyrophosphate
enzymatic activity [15,16]. In rice and barley an IPMK
able to phosphorylate all intermediates from inositol
bisphosphate to IP6 has been characterized [17].
To date IPMKs have been identified in dicotyledonous
and in monocotyledonous plants, as well as in algae.
There are many clues connecting IP6K to cell mito-
chondria. It was shown that human IP6K2 moves from
nuclei to mitochondria and provides physiologic regula-
tion of apoptotic process by generating IP7 [18].
Furthermore, yeast deficient in KCS1 (yeast IP6-Kinase),
kcslΔ, do not survive if they are grown in conditions in
which survival is dependent from mitochondrial func-
tion, thus demonstrating the importance of IP6K for
this organelles [19]. Summarizing, to date IP6K has not
been identified in plant chromosomes, but there are
many clues suggesting its presence in vegetal cells.

Some further observations could suggest that the corre-
sponding gene might be found in plant mtDNA, prob-
ably encripted and hidden by virtue of editing and/or
trans splicing processes. It is known that most of
mtDNA information concerns genic products acting
inside the mitochondrion itself. Plant mitochondrial
genomes have several peculiar characteristics such as
the large size (from 200Kb to 2400Kb), the presence of
introns and genetic material of chloroplast or nuclear
origin [20].
Furthermore, mitochondrial genome is characterized

by occurrence of RNA editing and trans splicing
mechanism enlarging protein variability [21]. RNA edit-
ing is a process in which some bases of an RNA mole-
cule are enzymatically modified, so that its information
content can be altered. Many molecular editing mechan-
isms are known, but in plants the most frequent is cyti-
dine to uridine transformation. In plant mitochondria
RNA editing is very common and it is required for gene
expression. Actually the genomic information encoding
an open reading frame is often incomplete in these
organelles, and RNA editing is necessary to yield a func-
tional product. The amino acid sequence of the encoded
protein is effectively altered after editing process, so that
it differs from that predicted by the genomic DNA
sequence. Trans splicing is a further process generating
genetic variability, in which two RNA molecules, pro-
duced by different DNA regions (even very distant from
one another), are joined in a single RNA molecule able
to produce a protein.
On the basis of the above considerations, we decided

to search IP6K gene in mtDNA of plants as well as in
nuclear chromosomes of two model vegetal organisms.
Thus, we analyzed all published mtDNA of plant and
the whole nuclear genome of Arabidopsis thaliana and
Oryza sativa, a dicotyledonous and a monocotyledonous
plant respectively. Arabidopsis thaliana is a small flow-
ering plant, belonging to eudicot, the largest group of
flowering plants on the planet. Because of its short gen-
eration time and compact size, it is used as a model
organism in plant biology and genetics. Its nuclear gen-
ome comprises five chromosomes, with a total size of
approximately 125 Mb (megabases). It is one of the
smallest genome among plants, and it was the first plant
genome to be sequenced in 2000 [22]. Oryza sativa
(rice) was the second plant genome to be published
[23], the first among monocot. It has the smallest cereal
genome consisting of just 430 Mb across 12 chromo-
somes and it is routinely used as a model organism in
cereal genomics.
Because of the considerable sequence heterogeneity

among the several known IPKs, common homology
search programs are not useful to our aim. Thus, we
decided to use a new approach, looking not for the gene
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sequence as whole, but for a specific tag sequence, char-
acterizing IPK gene family. This is possible only when a
gene, or a gene family, contains a region (usually a short
sequence) that is indispensable and always present in
the gene sequence. In fact, alignment studies between
IPKs from different organisms allowed to identify several
conserved motifs in the amino acids sequence. These
motifs comprise the ATP binding site, first characterized
in IP3-3K [24], the C-terminal motif (last 19 amino
acids), important for the catalytic activity [25], the
“SSLL” motif, required for enzymatic activity of IP6K
[26] and the P-XXX-D-X-K-X-G tag, a sequence of nine
amino acids with four of them very conserved among
IPKs [11]. Despite the considerable sequence heteroge-
neity of IPKs, this last motif represents a unique consen-
sus sequence and it can be considered a specific tag of
IPK gene family. The consensus sequence P-XXX-D-X-
K-X-G is a very important functional region, identifying
the inositol binding site of the enzyme [27]. Here, the
functional role explains its strong conservation through
evolution. To search for the IPK family tag in plant
DNA we exploited DLSME [28], a software for motif
extraction which allows for the motif structure to be
only partially specified by the user, as better explained
in the following.

Methods
Common softwares for sequence search are based on
sequence similarity, but they are not very useful when
the expected homology between the gene searched for
and the known sequences is low. Furthermore, these
softwares cannot detect possible changes in nucleotide
sequences due to RNA editing mechanisms. The intui-
tion behind our work is that some specific gene families,
such as all IPK genes, are characterized by the presence
of specific tags, short sequences of few amino acids,
often corresponding to functional regions. Thus, we pre-
sent a general, semi-automatic methodology to discover
the possible presence of specific, still undiscovered,
genes in cells and we applied it to plant genomes.
Such a methodology can be summarized as follows:
1. (Tag Definition) set a (partially undefined) sequence

representing the specific tag to search for;
2. (Genome Scanning) scan a plant genome sequence

(or a set of genome sequences) to individuate possible
instances of the tag;
3. (Post-processing Analysis) analyze the candidate sub-

sequences extracted by the previous step in order to
verify the presence of the gene in the considered
genomes.
In particular, the sequence associated to the tag

defined by step 1 is made of both symbols in the alpha-
bet Σ = {A,C,G,T}, representing nucleic acids, and a gen-
eric symbol X that can be associated to a subset of Σ.

This way, step 2 can be carried out by performing an
approximate search of the motif represented by the tag
sequence.
In the following we specify how the steps listed above

have been particularized to achieve our purposes.

Tag Definition
The most important tag for IPK gene is the P-XXX-D-
X-K-X-G motif, corresponding to the inositol binding
site of the enzyme. Thus, for the identification of IP6K
gene in plant DNA, we focused on the nucleotide
sequence corresponding to this specific IPK tag.

Genome Scanning
We analyzed all the published mtDNAsequences (avail-
able at http://www.ncbi.nlm.nih.gov/sites/entrez) and the
whole nuclear genome of two plants and performed
motif extraction from them, since a tag can be viewed
as a subsequence whose structure is not completely spe-
cified a priori. Among the different algorithms and tools
available for motif discovery (e.g., see [29-34]), we chose
DLSME [28] since it is able to handle different complex
kinds of pattern variabilities, as will be better recalled in
the following.

Post-processing Analysis
For each identified tag, we extracted a sequence of
about 1200 nucleotides surrounding the consensus
sequence and examined it as a candidate IP6K gene.
Nucleotidic sequences were translated in aminoacid
sequences by using the Transeq [35] software. Then, we
examined the identified amino acid sequences looking
for other IP6Ks conserved domains. In order to detect
possible homologies, we performed sequence alignments
using ClustalW [36] and BLAST [37]. Finally, using the
TBLASTX and TBALSTN algorithms, we screened
expressed sequence tag (EST) databases for proteins
containing the sequences identified by our tag search.
In the following, we first provide a brief description of

DLSME and of the setting we exploited for our pur-
poses, and then describe the main results we have
obtained by our analysis.

Using DLSME
DLSME [28] is a system designed to mine general kinds
of motifs where several “exceptions” may be tolerated;
that is, it is able to handle different complex kinds of
pattern variabilities. In particular, DLSME is able to
search for patterns composed of any number of short
subsequences (boxes, in the following), where the sizes
of both the conserved regions and the regions between
two boxes can be specified by the user as intervals ran-
ging from a minimum to a maximum value. Moreover,
mismatches are taken into account, as well as “skips”
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(deletions) and box “swaps” (box invertions), that possi-
bly affect box occurrences. Furthermore, in DLSME, it
is possible to specify boxes where some symbols are
“anchored” to get a fixed value. Despite the complexity
of the allowed pattern variabilities, the system is able to
exhibit good performances.
In particular, for the purposes of this research, we

looked for the pattern:
CC{T,C,A,G} —————— GA{T,C}—AA{A,G}—GG

{T,C,A,G}
using the sets of DLSME configuration parameters

reported in Figure 1.

Results
Due to the numerous suggestions relating IP6K to cell
mitochondria, we decided to first perform the IP6K
gene search on mitochondrial DNA of plants. To date
the full mitochondrial genome sequence is known for 42
different vegetal organisms, belonging to various Phyla,
even very distant from one another from the evolution-
ary point of view. The specific IP6Ks tag (P-XXX-D-X-
K-X-G) was searched over the overall sequenced mito-
chondrial genomes available to date and both DNA
strands were analyzed. Twenty three genomes out of 42
gave at least one positive match. Interestingly, we noted
that some tag sequences (9 amino acids) were identical
among different organisms. For each identified tag we
extracted a sequence of about 1200 nucleotides sur-
rounding it. To find out possible relevant homologies,
we performed alignments among the sequences found
in different vegetal organism. All the sequences sharing
the same tag showed high similarity in the region

surrounding the consensus sequence, while alignment
with IP6K known genes (Saccharomyces cerevisiae KCS1
or human IP6K1) showed only a weak similarity.
Furthermore, in order to confirm the identity of our
putative hit, we looked for other IP6Ks conserved motifs
in the identified putative amino acids sequence like the
ATP binding site, the C-terminal motif (last 19 amino
acids), and the “SSLL” motif. These analyzes led us to
focus on the sequence PVGTDRKGG, that was found in
mitochondrial genome of Tripsacum dactyloides, Sor-
ghum bicolour, and three different species of Zea genus
(Zea mays, Zea perennis and Zea luxurians). Alignment
between the 410 aminoacid around the PVGTDRKGG
sequence of Tripsacum dactyloides and the human IP6K
gene showed an interesting correspondence of the con-
sensus region (see Figure 2).
To verify if the Tripsacum dactyloides sequence was

an actively transcribed gene, we analyzed the Expressed
Sequence Tags (ESTs) databases. These databases
include short fragments of DNA derived from a longer
cDNA sequence and representing part of the expressed
genome. In order to confirm the expression of our
mtDNA sequence, we screened EST databases using the
region surrounding the PVGTDRKGG tag of Tripsacum
dactyloides. This search failed to find any EST matching
indicating that our putative hit is unlikely to be tran-
scribed in mRNA. Finally, we used a region of 50 amino
acids of Tripsacum dactyloides mtDNA surrounding the
consensus sequence to perform a multiple alignment
with corresponding regions of inositol phosphate kinases
(IPMK, IP6K, IP3-3K) from different organism using
ClustalW2. As shown in Figure 3, our sequence resulted

Figure 1 DLSME configuration parameters Configuration parameters exploited for DLSME when we looked for the pattern: CC{T,C,A,G}
—————— GA{T,C}—AA{A,G}—GG{T,C,A,G}
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to be an outsider. This result indicated that the identi-
fied mitochondrial tag does not belong to any subgroup
of kinases composing the IPK gene family.
Once excluded the presence of IP6K gene in mtDNA,

we decided to look in nuclear genome of plants where,
up to now, the search has been performed only by
methods based on sequence similarity. We analyzed all
chromosomes of Arabidopsis thaliana and Oryza sativa,

a dicotyledonous and a monocotyledon plant respec-
tively. In each chromosome, we found dozens of tags,
but only few tag sequences per chromosome resulted in
good candidates to be specific IP6K tags. In fact, too
polar or too big amino acids between the four fixed
positions of the tag are not consistent with the tag
sequence functionality. In particular we considered as
good candidate a tag sequence including amino acids L,

Figure 2 Alignment around PVGTDRKGG vs human Alignment between the 410 amino acids around the PVGTDRKGG sequence of
Tripsacum dactyloides and the human IP6K gene (ClustalW2). “*” = residues identical in the two sequences in the alignment; “:” = conserved
substitutions; “.” = semi-conserved substitutions.
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V,T,M,I,A,S,G,C between the four fixed positions, and
we rejected others. For each identified tag, we extracted
a sequence of about 400 amino acids surrounding the
tag. Each sequence was examined as a candidate IP6K
gene as described above for mtDNA. We did not find
any strong homology with known IP6Ks. This result was
not surprising, because only a weak similarity is anyhow
expected between organisms very distant from an evolu-
tionary point of view. Thus, the selected sequence to be
actually interesting was established on the basis of other
parameters, like alignment of tag sequences, presence of
other conserved amino acids and of sequence in EST
database. A very promising sequence was found on
chromosome 5 of Oryza sativa, around the tag
PLLVDSKLG. The sequence comprises 198 amino acids
without any stop codon. As shown in Figure 4, the Clus-
talW alignment of this sequence and Saccharomyces
cerevisiae KCS1 gene gave a positive score with an
alignment in correspondence of the inositol-binding
region. Alignment with human IP6K (hIP6K) gave a
lower score, but still maintained the correspondence

between tags (see Figure 5). We performed a multiple
alignment (ClustalW2) between the region of 50 amino
acids of Oryza sativa surrounding the tag and the corre-
sponding regions of inositol phosphate kinases (IPMK,
IP6K, IP3-3K) from different organisms. This analysis
revealed (Figure 6) that the Oryza sativa sequence,
although appear dissociated from other IPK family
members shows a certain degree of similarity with Giar-
dia lamblia IP6K, that itself appears to be a distant
member of the IPK genes family. Finally, we screened
the EST databases using the region surrounding the
PLLVDSKLG tag of Oryza sativa. This search showed
some matching EST, indicating that the tag sequence is
likely to be transcribed in mRNA.

Discussion and Conclusions
Inositol hexaphosphate kinase (IP6K) catalyzes the con-
version of IP6 to IP7 using ATP as phosphate donor. It
belongs to an inositol polyphosphate kinase superfamily,
the IPKs (Pfam PF03770), that evolved from a common
ancestor. It is thought that a primordial IPMK may

Figure 3 Multiple alignment by ClustalW2 Phylogenetic tree from multiple alignment of a 50 amino acid region of Tripsacum dactyloides
mtDNA surrounding the tag with corresponding regions of inositol phosphate kinase (IPMK, IP6K, IP3-3K) from different organism (Clustal W2).
Branch lengths are proportional to the amount of inferred evolutionary change.
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have been the evolutionary precursor of the IP3-3Ks
and the IP6Ks, all of which contain the P-XXX-D-X-K-
X-G motif [38]. Moreover, this motif represents a
unique consensus sequence for the IPK family, with
four key amino acids very conserved among different
inositol phosphate kinases, despite their considerable

sequence heterogeneity. This region modulates the cata-
lytic site for phosphate transfer from ATP to the inosi-
tol ring [39].
The inositol pyrophosphate IP7 is present in all eukar-

yotic cells analyzed thus far, from amoeba to man; it is
not surprising that the enzyme responsible for its synth-
esis is highly conserved through evolution. In fact, after
the first IP6K purification from rat brain [40], the
enzyme was cloned in other mammalians, and its high
evolutionary conservation was regularly observed, which
facilitated the identification and cloning of IP6K
enzymes from distant organisms, including yeast and
the amoeba Dictyostelium[41]. It is notable that Dictyos-
telium diverted from the evolutionary main stream after
the diversion of yeast but before the splitting between
animals and plants [42]. Furthermore, the only IPK gene
present in the ancient eukaryote diplomate Giardia lam-
blia has been demonstrated to be a IP6K[43]. Thus, on
the basis of evolutionary considerations, IP6K is
expected to be found also in vegetal organisms.
Moreover, pyrophosphate IP7 is present in vegetal

organisms, and IP6-kinase enzymatic activity has been
demonstrated in plants. However, bioinformatics analy-
sis failed to identify any IP6 kinase in the complete Ara-
bidopsis thaliana nuclear genome. We hypothesized that
IP6K gene might actually occur nested in vegetal
mtDNA, where more frequently phenomena enlarging
protein variability do occur. Tag identification in
mtDNA could indicate the presence of IP6K gene, even
if not in a canonic form. Indeed, trans splicing mechan-
isms might compact a gene consisting of more segments
dislocated in different mtDNA regions, and editing phe-
nomena could contribute to the failure of homology
searches. In fact, editing mechanism might generate
RNA molecules much different from DNA producing
them, so that DNA sequence can be not immediately
referable to IP6K gene in its transcript. Thus, the search
of a gene starting from its characterizing consensus
sequence represents a promising approach to find an
encrypted gene. We searched for a specific IP6K tag
within all available vegetal mtDNA sequences using
DLSME, a very flexible system for motif discovery,
allowing for dealing with genetic code degeneration and
possible occurrences of editing events. Our search
revealed several tags in mtDNA of examined plants, but
an accurate analysis of sequences surrounding the con-
sensus motifs led us to conclude that our hit does not
belong to the IPK gene family. Indeed, the P-XXX-D-X-
K-X-G consensus sequence is a characterizing motif of
IP kinases, and it was found in all members of the
family. Our search failed to find any sequence contain-
ing the tag ascribable to IP6K gene and, thus, we can
conclude that IP6K gene is not present in plant mtDNA.

Figure 4 Alignment around PLLVDSKLG vs yeast Alignment
between the 198 amino acid sequence around the PLLVDSKLG tag
of Oryza sativa and the yeast KCS1 gene (Clustal W2). ”*” = residues
identical in the two sequences in the alignment; ”:” = conserved
substitutions; ”.” = semi-conserved substitutions. In red the P-XXX-D-
X-K-X-G tag.
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Therefore, we decided to extend the search of IP6K
gene on nuclear genome of plants. Up to now, IP6K
gene search in plant chromosomes have been performed
with bioinformatics methods based on sequence similar-
ity. In our case, we looked at plant nuclear genome
applying the new approach of gene identification by tag
search. The advantage of this method is that it allows
identification of a gene even if many nucleotidic
changes have been accumulated during the evolution, so
that the homology between homologous loci is now
very low. In fact, it is known that IP6K is a gene highly
conserved through mammalian evolution, but the
homology is low when compared with organisms filo-
genetically very distant, like Yeast. It is possible that in
evolutionary stream bringing to plants, many nucleotidic
changes occurred, so that plant IP6K gene looks quite
different both from mammalian and yeast genes. By car-
rying out our search, we found an interesting sequence
in nuclear genome of Oryza sativa. This sequence
shows an interesting similarity with yeast KCS1, giving
a relatively high score when the two sequences are
aligned using ClustalW. KCS1 gene is quite different
from mammalian IP6K genes. It is bigger, comprising

1052 amino acids against 410 of human IP6K, that lacks
the first 305 KCS1 amino acids, and it has some other
interruptions as compared to the yeast gene. Very inter-
estingly, the homology region between Oryza sativa
sequence and KCS1 is indeed clustered in the protein
domain corresponding to human IP6K. This result
might represent the strong evolution drive of the cataly-
tic IPK domain and the likely conservation of the key
feature of this domain in the identified Oryza sativa tag.
Furthermore ClustalW alignment shows a correspon-
dence between tags when we compare our sequence
with both KCS1 and human or mouse IP6K. This corre-
spondence is still maintained in multiple alignment
between our sequence and KCS1, human IP6K and
mouse IP6K.
Multiple alignment of a 50 amino acid region of

Oryza sativa DNA surrounding the tag with corre-
sponding regions of IPKs from different organisms
showed a degree of connection between Oryza sativa
tag and Giardia lamblia IP6K sequences. Interestingly,
among the different inositol phosphate kinases tested,
the best match of Oryza sativa tag region was with a
very distant IP6K. This result suggested that the

Figure 5 Alignment around PLLVDSKLG vs human Alignment between the 198 amino acid sequence around the PLLVDSKLG tag of Oryza
sativa and the human IP6K gene (Clustal W2). ”*” = residues identical in the two sequences in the alignment; ”:” = conserved substitutions; ”.” =
semi-conserved substitutions. In red the P-XXX-D-X-K-X-G tag.
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sequence around the identified tag might represent a
distant member of the IP6K subfamily of gene as the
Giardia IP6K enzyme.
As remarked above, the screening of EST databases

showed some matching ESTs. Note that, although EST
database are a very powerfull tools to study the trascrip-
tome of a specific organism, they are often inperfect.
Indeed, their quality is affected by transcript redun-
dancy, low sequence quality and by high transcript trun-
cation rates. Furthermore, these databases only
represent the trascriptome of the tissue and develop-
mental stages of the plant from which the mRNA was
isolated. Thus, EST databases are not exhaustive, and a
negative match does not exclude the expression of rare
transcripts. This means that the ESTs we found indicate
the chromosome region containing the putative plant
IP6K is actively transcribed, although such ESTs do not
possess the conserved PLLVDSKLG domain. Likely, the

identified EST correspond to truncated isoform of the
full length mRNA.
In conclusion, we think that this sequence is part of

an Oryza sativa gene homologous to mammalian IP6K.
In particular we suppose that it is the central part of the
gene, comprising the inositol binding site, and it lacks in
the N-terminus and the C-terminus sequences, thus
indicating the presence of more than one exons in the
rice gene. The big evolutive distance between rice and
both human and yeast could explain the low similarity
observed among these gene.
As future step of our research, we are planning experi-

ments of molecular cloning and biochemical characteri-
zation to confirm our hypothesis and to determine
substrate specificity of the enzyme. We will use RT-PCR
to clone Oryza sativa IP6K cDNA. The cDNA will be
cloned into a yeast expression vector and the activity
will be assessed through trans-complementation of

Figure 6 Phylogenetic tree A Phylogenetic tree from multiple alignment of a 50 amino acid region of Oryza sativa DNA surrounding the tag
with corresponding regions of inositol phosphate kinase (IPMK, IP6K, IP3-3K) from different organisms (ClustalW2). Branch lengths are
proportional to the amount of inferred evolutionary change.
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several yeast mutants, with particular focus on the yeast
IP6 kinase mutant (kcs1Δ). The recombinant enzymes
will be tested in vitro by using either different [3H]inosi-
tol polyphosphates species or unlabelled inositol phos-
phates with [g-32P]ATP to determine substrate
specificity and calculate kinetic parameters.

Additional material

Additional file 1: Accession numbers of the genes referred in the
figures.
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