ORAL PRESENTATION

Open Access

WAT1 (WALLS ARE THIN1) defines a novel auxin transporter in plants and integrates auxin signaling in secondary wall formation in Arabidopsis fibers

Philippe Ranocha¹, Oana Dima², Judith Felten³, Amandine Freydier¹, Laurent Hoffmann¹, Karin Ljung³, Benoit Lacombe⁴, Claire Corratgé⁴, Jean-Baptiste Thibaud⁴, Björn Sundberg³, Wout Boerjan², Deborah Goffner^{1*}

From IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery Arraial d Ajuda, Bahia, Brazil. 26 June - 2 July 2011

Background

Our knowledge of signaling mechanisms involved in secondary cell wall (SCW) formation is quite limited. To discover novel markers of SCW, a genomics approach using *Zinnia elegans* xylogenic cultures was undertaken that identified hundreds of gene candidates expressed at the onset of secondary wall formation [1]. *Arabidopsis* homologs and the corresponding T-DNA mutants for each *Zinnia* gene were identified and the panel of *Arabidopsis* cell wall mutants was subjected to developmental and wall-related phenotyping.

Results and conclusion

Among the most interesting mutants was *wat1* (*walls are thin1*). The most conspicuous phenotypic feature of *wat1* was the severe reduction (sometimes to the extent of being inexistent) of SCW in xylary and interfascular stem fibers. Interestingly, xylem vessel wall thickness and morphology were not modified by the mutation. In addition to the SCW phenotype, *wat1* was characterized by 5-Me-tryptophan seedling toxicity, severely decreased auxin transport and content in stems, and massive down-regulation of auxin-related genes. These data led us to the conclusion that WAT1 acts as an upstream regulator of SCW deposition in fibers, presumably through an auxin-mediated mechanism [2].

Bioinformatic analysis of WAT1, annotated as 'homolog to a *Medicago truncatula* nodulin gene, *MtNOD21*,

¹Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France

suggested that WAT1 encoded a putative transporter belonging to the Plant Metabolite Exporter family [3]. WAT1:GFP fusion protein experiments localized WAT1 on the tonoplast, confirming the prediction that WAT1 is a membrane protein. Although WAT1 is plant-specific, it shares structural similarities with bacterial amino acid transporters in that it consists of ten transmembrane domains encompassed within a tandem Domain of Unknown Function 6 (DUF6).

To characterize WAT1 function, we recently tested its capacity to transport tryptophan and/or auxin in both yeast and *Xenopus*oocytes. Neither WAT1-expressing yeast cells nor *Xenopus* oocytes were able to facilitate radiolabeled Trp import or export. However, we have been able to demonstrate that WAT1 facilitates auxin import in both expression systems. These results clearly place WAT1 among the ranks, along with PINs, AUX/LAXs andABCB/MDR/PGPs, as a novel, bona fide auxin transporter in plants.

This study constitutes the first functional characterization of any of the 46 members of the WAT1 gene family in *Arabidopsis* and our hope is that this discovery will help pave the way in identifying the functions of other family members. Moreover, the *wat1* mutant will be an ideal tool to address the question as to how auxin subcellular homeostasis plays a role in fiber SCW formation in Arabidopsis. Our current efforts to understand poplar WAT1-mediated auxin signaling in wood formation in trees will also be discussed.

© 2011 Ranocha et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: goffner@scsv.ups-tlse.fr

Full list of author information is available at the end of the article

Author details

¹Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France. ²VIB Department of Plant Systems Biology, UGent Department of Plant Biotechnology and Genetics, 9052 Gent, Belgium. ³Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden. ⁴Biochimie et Physiologie Moléculaire des Plantes, CNRS UMR 5004, Institut National de la Recherche Agronomique U386, Montpellier SupAgro, Université Montpellier II, Place Viala, 34060 Montpellier Cedex, France.

Published: 13 September 2011

References

- Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D: Novel markers of xylogenesis in *Zinnia elegansare* differentially regulated by auxin and cytokinin. *Plant Physiol* 2005, **139**:1821-1839.
- Ranocha Ph, Denancé N, Vanholme R, Freydier A, Martinez Y, Hoffmann L, Köhler L, Pouzet C, Renou JP, Sundberg B, Boerjan W, Goffner D: *Walls Are Thin1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21*, regulates auxin homeostasis and is required for secondary wall formation in fibers. *Plant J* 2010, 63:468-483.
- Saier MH, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. *Nucleic Acids Res* 2006, 34(Database issue):D181-186.

doi:10.1186/1753-6561-5-S7-O24

Cite this article as: Ranocha *et al.*: **WAT1 (WALLS ARE THIN1) defines a novel auxin transporter in plants and integrates auxin signaling in secondary wall formation in Arabidopsis fibers.** *BMC Proceedings* 2011 **5** (Suppl 7):O24.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit