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Abstract

We aim to identify rare variants that have large effects on trait variance using a cost-efficient strategy. We use an
oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies to identify families more
likely to harbor rare variants, by estimating the mean number of quantitative trait loci (QTLs) in each family. We
hypothesize that families with additional QTLs, relative to the other families, are more likely to segregate functional
rare variants. We test the association of rare variants with the traits only in regions where at least modest evidence
of linkage with the trait is observed, thereby reducing the number of tests performed. We found that family 7
harbored an estimated two, one, and zero additional QTLs for traits Q1, Q2, and Q4, respectively. Two rare variants
(C4S4935 and C6S2981) segregating in family 7 were associated with Q1 and explained a substantial proportion of
the observed linkage signal. These rare variants have 31 and 22 carriers, respectively, in the 128-member family and
entered through a single but different founder. For Q2, we found one rare variant unique to family 7 that showed
small effect and weak evidence of association; this was a false positive. These results are a proof of principle that
prioritizing the sequencing of carefully selected extended families is a simple and cost-efficient design strategy for
sequencing studies aiming at identifying functional rare variants.

Background
Genome-wide association scans (GWAS) have been suc-
cessful at identifying common variants associated with
common diseases or quantitative traits. GWAS have bene-
fited from international efforts to catalog a substantial pro-
portion of the common variants (generally thought to be
those with allele frequency above 5%) found in the genome
and characterize the linkage disequilibrium structure
between them [1]. Because the designs of GWAS are based
on genotyping only a carefully selected set of common sin-
gle-nucleotide polymorphisms (SNPs) that are at most
loosely correlated to one another (a set of tagging SNPs), it
is still difficult to infer causality from the observed associa-
tions. Large follow-up resequencing efforts are necessary to
attempt to locate the functional variants that can explain

the associations identified by GWAS. True functional
variants might have been only indirectly detected by
GWAS through linkage disequilibrium; although these
functional variants are likely to be in the uncommon to
common frequency range, the possibility exists that some
associations identified by GWAS are truly caused by rare
variants (generally thought to be those with allele fre-
quency less than 1%) that have a large effect on the disease
or the trait [2]. Because only a few individuals are expected
to be carriers of a rare allele, methods that are based on
the accumulation of rare alleles across a set of rare SNPs
have been developed for samples of unrelated individuals
[3,4]. For instance, the proportion of case and control sub-
jects who are carriers of at least one rare allele at any one
of the SNPs in the set can be compared and their com-
bined effect tested. If all SNPs in the set are truly func-
tional, then these accumulation methods benefit from the
increase in the effective frequency of the set [5]. But
because the set of SNPs is also likely to include SNPs that
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are truly nonfunctional, perhaps even in larger numbers,
the difficulty in inferring causality remains.
We present a family-based study design strategy to help

identify specific rare variants, potentially functional, that
are associated with a genetically determined quantitative
trait. The strategy relies on first performing an oligogenic
segregation analysis of the trait in a sample of extended
families, analyzing each family individually. This analysis
allows us to identify the families which are more likely to
harbor rare variants that explain a significant proportion
of the trait variance, that is, families who carry more quan-
titative trait loci (QTLs). Rare alleles are unlikely to segre-
gate in more than a few families, especially if families are
not ascertained on the basis of the presence of a disease or
extreme trait values but rather are population-based sam-
ples, as is the case for the simulated Genetic Analysis
Workshop 17 (GAW17) family data. Once a rare allele
enters a family, the allele can segregate to many more
family members, making extended-family designs a natural
choice for the identification of specific rare functional var-
iants. Identifying and prioritizing families which are more
likely to harbor rare QTLs can reduce the multiple testing
burden associated with testing a (potentially large) number
of rare, mostly nonfunctional variants spread over many
families as well as reduce the sequencing cost.

Methods
For each quantitative trait, we estimate the mean num-
ber of QTLs explaining a proportion of the variance of
the trait and their individual effect sizes, assuming an
oligogenic linear model. In this model, the trait Y is
modeled as:

Y X Q ei i

i

k

= + + +
=
∑m b a

1

, (1)

where μ is the overall mean, X is the design matrix of
covariates, b is the vector of covariate effects, Qi is the
design matrix of the additive and dominant components
of the ith QTL, ai is the vector of the ith QTL effect,
and e is the normally distributed residuals. Using the
reversible jump Markov chain Monte Carlo algorithm
implemented in the program Loki [6], the number of
QTLs k is allowed to be an estimable parameter of the
model. The number of QTLs that each family is likely
to harbor can be estimated by analyzing each family
separately. Sex, Age, and Smoking status of each partici-
pant are included as covariates.
Families who are estimated to harbor at least one addi-

tional QTL, compared to the average number of QTLs in
the other families, are tested for linkage at each one of
the genes where fully informative identity-by-descent
sharing is available. We hypothesize that these additional
QTLs are caused by rare functional variants (whose

effects are detectable) that are segregating in that family.
We use a variance components oligogenic linkage
approach, implemented in the software SOLAR [7], to
evaluate the evidence of linkage with the quantitative
traits, keeping Sex, Age, and Smoking status of the indivi-
duals as covariates whenever they are declared significant
predictors at p < 0.10. Regions surrounding a LOD of
0.60 (corresponding to a pointwise p-value of 0.05) are
further investigated for the presence of rare functional
variants. Within a 1-Mbp window centered at the posi-
tion where the family-specific LOD score is detected, we
extract all variants that enter that family through at most
two founders. If at least five copies of a rare allele are
seen in the family, the variant is included as a covariate
in the model, in order to test its association with the trait
and to determine how much of the linkage signal can be
explained by the variant.
These analyses are performed using replicate 1 of the

simulated GAW17 phenotypes, without knowledge of
the underlying simulated model.

Results
Table 1 shows the results of the oligogenic segregation
analysis performed on the three quantitative traits. The
proportions of the total variance of the traits attributable
to each covariate and the proportion of the variance
attributed to all QTLs are indicated as well as the
expected number of QTLs that are likely to be segregat-
ing in all families. The three quantitative traits appeared
to be genetically determined, with heritabilities of about
54% (Q1), 42% (Q2), and 64% (Q4) (heritability is defined
as the ratio of the variance attributed to the QTLs to the
variance not explained by the covariates).
Table 2 shows the number of QTLs that are likely to be

segregating in each one of the eight extended families
that formed the sample. For trait Q1, family 7 (consisting
of 128 members, including 37 founders) was estimated to
harbor two more QTLs than the number expected to be
found in the other families. For trait Q2, the same family
was expected to harbor one additional locus. For trait
Q4, no family was estimated to have at least one more
QTL than the other families, and so this trait was not
analyzed further.
We hypothesize that the additional loci in Q1 and Q2

reflect the presence of rare alleles that are segregating
mostly, if not uniquely, in family 7. To help identify these
rare functional alleles, we investigated regions of the gen-
ome where only that family showed at least some modest
evidence of linkage with the trait (LOD of at least 0.6, cor-
responding to a p-value of 0.05). For trait Q1, 505 genes
were in regions that attained LOD > 0.6; we observed a
maximum LOD of 5.3 (p = 4 × 10–7) for TLL1 and
ANP32C, both located on chromosome band 4q32.3. For
trait Q2, 315 genes attained a LOD > 0.6, with a maximum
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LOD of 2.02 (p = 0.001) at UBASH3A and SLC37A1
(21q22.3). The regions surrounding all these genes (± 500
kb) included 216 variants for trait Q1 and 85 variants for
trait Q2; these variants entered family 7 through at most
two founders, and at least five copies of the rare alleles
were seen among all the family’s members.
Each of these variants was tested for association with the

trait in family 7, and we evaluated how much of the link-
age the variants explained. Table 3 shows the variants that
were significantly associated with a trait, even after
accounting for the number of SNPs tested for that trait
(i.e., after a Bonferroni correction of 216 tests for Q1 and
85 tests for Q2). Some of the SNPs in Table 3 were found
to be in high linkage disequilibrium with each other in
family 7; for the SNP pairs C5S12-C5S252 and C21S1096-
C21S898 and the SNP triplet C11S2779-C11S2804-
C11S3874, carriers of the rare allele at one SNP were also
carriers of the rare allele at another SNP. Moreover, all
but one carrier of the rare allele at C6S2432 were also car-
riers of the rare allele at C6S2981. To disentangle the asso-
ciations seen at these SNPs and to refine the role of each,
we evaluated their effects in the other families.
For trait Q1, C4S4935 (VEGFC) explained a highly signif-

icant proportion of the variance (33.1% in family 7,
p = 7.9 × 10–12; 10.6% in all families combined, p = 1.1 ×
10–16). This variant was unique to family 7; it entered the
family through a single founder and was identified in 30
other family members. C6S2981 (VEGFA) was also signifi-
cantly associated with trait Q1 (28.9% of the variance in
family 7 was explained, p = 1.3 × 10–7; 11.9% of the

variance in all families was explained, p = 9.9 × 10–18); it
entered the family through a different founder and was
found in 21 additional members (14 of whom were also
carriers of the C4S4935 variant). Even though both variants
shared a large number of carriers, each variant was still
associated (at p < 10–7) when the other one was controlled
for. C6S2981 was also identified and significantly associated
in the other families, unlike the C6S2432 variant (which
was in high linkage disequilibrium with C6S2981 in family
7); the possibility for C6S2432 (in PSMB8) to have a func-
tional effect was thus excluded. The other variants from
Table 3 that were associated with Q1 were also identified
in the other families, but they showed no significant effect
there, except for C11S3874 (FIBP), which was unique to
family 7 (15.9% of the variance in family 7 was explained,
p = 1.6 × 10–4; 5.0% of the variance in all families was
explained, p = 5.2 × 10–7).
For trait Q2, most of the variants found to be asso-

ciated in family 7 were found in other families; although
these additional carriers did not improve the associa-
tions, their numbers were often too small to draw signif-
icant conclusions. C2S4965 (WDR75) was unique to
family 7 and showed some level of association (15.2% of
the variance in family 7 was explained, p = 3.5 × 10–4;
3.6% of the variance in all families was explained, p =
7.0 × 10–5).

Discussion and conclusions
Our strategy of using an oligogenic segregation analysis as
a prioritizing tool to identify specific rare functional var-
iants that explain a significant proportion of the trait var-
iance provides insights into efficient sequencing study
design: By allocating sequencing resources to families that
are more likely to harbor rare functional variants, costs
can be reduced. This is especially important if the main
focus of a study is the discovery of rare functional variants
that are unlikely to segregate in more than a few families.
Once a rare functional variant enters a family, it can segre-
gate to many family members, increasing the likelihood of
detecting its effect, so long as the variant entered the
family a few generations ago; this warrants the use of
large, multigenerational families in which many meioses
occurred. Statistical validation and replication of the
effects of rare variants will require an even larger sample
size, without even the certainty of capturing the rare

Table 1 Results of the segregation analyses of the three available quantitative traits

Trait Sex (%) Age (%) Smoking status (%) QTL (%) (number of QTLs) Residual (%) Heritability (%)

Q1 0.3 10.3 4.1 46.5 (4.7) 38.9 54.4

Q2 0.3 0.3 0.2 41.8 (3.7) 57.4 42.1

Q4 1.4 73.8 3.3 13.8 (3.5) 7.6 64.5

Sex, Age, and Smoking status of the participants were included as covariates. Indicated are the percentages of the variance of the traits that are explained by
each covariate, all QTLs taken together (along with the expected number of QTLs), and the residuals. Heritability is defined here as the ratio of the variance
attributed to the QTLs (column 5) to the variance not explained by the covariates (column 5 + column 6).

Table 2 Number of QTLs that are expected to be found
in each family

Family Family size Q1 Q2 Q4

1 86 1.7 1.0 1.8

2 100 1.5 1.3 1.7

3 90 1.3 1.0 1.6

4 74 1.7 2.1 1.9

5 73 1.9 1.0 2.6

6 73 1.2 1.1 1.0

7 128 3.6 (+ 2.1) 2.24 (+ 1.0) 2.3

8 73 1.1 1.1 1.4

Whenever a family is expected to harbor at least one additional QTL than the
other families, on average, the number of additional QTLs is indicated in
parentheses.
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Table 3 Tests of association between variants and traits Q1 and Q2

Trait SNP (Gene) Family Number of copies (number in founders) Association p-value Unadjusted LOD Adjusted LOD Variation due to SNP (%)

Q1 C4S4935 (VEGFC) 7 31 (1) 7.87 × 10–12 4.96 0.00 33.11

Others 0 (0) NA NA NA NA

All 31 (1) 1.12 × 10–16 5.12 0.00 10.64

C6S2981 (VEGFA) 7 22 (1) 1.25 × 10–7 2.80 0.03 28.90

Others 24 (2) 1.27 × 10–8 1.28 0.00 4.97

All 46 (3) 9.90 × 10–18 4.91 0.00 11.96

C6S2432 (PSMB8) 7 23 (1) 7.78 × 10–7 2.37 0.03 25.18

Others 0 (0) NA NA NA NA

All 23 (1) 3.95 × 10–11 4.58 0.94 8.94

C6S5169 (MCM9) 7 21 (2) 3.37 × 10–5 1.91 0.04 17.34

Others 15 (4) 0.90 0.08 0.08 0.00

All 36 (6) 4.39 × 10–5 1.60 0.34 3.05

C11S2779 (OR10W1) 7 16 (1) 1.64 × 10–4 0.60 0.00 15.19

Others 36 (9) 0.62 0.00 0.00 0.04

All 52 (10) 2.96 × 10–3 0.64 0.14 1.72

C11S2804 (OR5AN1) 7 16 (1) 1.64 × 10–4 0.60 0.00 15.19

Others 107 (24) 0.46 0.00 0.00 0.09

All 123 (25) 0.024 0.64 0.40 0.87

C11S3874 (FIBP) 7 16 (1) 1.64 × 10–4 1.08 0.09 15.19

Others 0 (0) NA NA NA NA

All 16 (1) 5.22 × 10–7 0.87 0.02 5.07

Q2 C21S1354 (U2AF1) 7 7 (1) 2.58 × 10–4 1.79 0.60 12.31

Others 4 (1) 0.81 0.23 0.23 0.02

All 11 (2) 6.56 × 10–4 1.07 0.52 1.99

C2S4965 (WDR75) 7 13 (1) 3.51 × 10–4 1.22 0.04 15.25

Others 0 (0) NA NA NA NA

All 13 (1) 7.04 × 10–5 0.00 0.00 3.62

C5S12 (PLEKHG4B) 7 24 (1) 3.80 × 10–4 0.71 0.00 12.92

Others 4 (2) 0.75 0.00 0.00 0.00

All 28 (3) 7.31 × 10–4 0.07 0.00 2.62

C5S252 (PLEKHG4B) 7 24 (1) 3.80 × 10–4 0.71 0.00 12.92

Others 4 (2) 0.75 0.00 0.00 0.00

All 28 (3) 7.31 × 10–4 0.07 0.00 2.62

C21S898 (BRWD1) 7 12 (2) 4.29 × 10–4 1.96 1.43 8.46

Others 20 (4) 0.21 0.32 0.26 0.05

All 32 (6) 9.69 × 10–4 1.30 0.85 0.99

C21S1096 (BRWD1) 7 12 (2) 4.29 × 10–4 1.96 1.43 8.46

Others 16 (3) 0.043 0.32 0.20 0.50

All 28 (5) 8.84 × 10–5 1.30 0.80 1.85

The effect of a specific variant on the test of linkage (unadjusted LOD versus LOD adjusted for the variant) at the position of the gene is indicated as well as the proportion of the variance explained by the variant. Results are
separated according to the set of families on which the analysis was restricted: in family 7 alone (7), in families other than family 7 (Others), and in all families combined (All). Causal SNPs and genes are in bold.
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variants that are possibly unique to the families in which
they were discovered; the importance of biological valida-
tion will be key in interpreting results.
Without prior knowledge of the GAW17 simulation

answers and using an oligogenic segregation analysis as a
prioritization tool for selecting the families most likely to
harbor rare variants, we correctly identified two rare func-
tional variants, VEGFA and VEGFC, including one private
to family 7. Note that all genes with LOD scores greater
than 4 in all families combined carried either a true sus-
ceptibility variant (C6S2981 for VEGFA and C4S4935 for
VEGFC) or a variant in high linkage disequilibrium with a
true causal one (C6S2432 for PSMB8). All other genes
from Table 3 were false positives, and all had LOD scores
below 2. The strength of linkage was thus indicative of the
presence of true susceptibility genes.
In addition to being a successful strategy, our method is

an efficient one with respect to reducing sequencing costs
and to using resources conservatively by correctly elimi-
nating traits unlikely to yield detectable results. For exam-
ple, despite a heritability of 65%, Q4 was not under the
influence of any of the genotyped exonic SNPs in the data
set and was correctly eliminated based on our oligogenic
segregation analysis, which showed that less than 14% of
the total variance was due to a QTL. Although our strat-
egy led to many fewer false positives than testing for all
variants, other complementary design and/or analytic
approaches will be needed to further decrease type I error.
Because not all susceptibility variants for a given trait will
be represented in family data, large samples of unrelated
individuals will continue to provide a complementary
design strategy.
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