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Abstract

The Genetic Analysis Workshop 17 data we used comprise 697 unrelated individuals genotyped at 24,487 single-
nucleotide polymorphisms (SNPs) from a mini-exome scan, using real sequence data for 3,205 genes annotated by
the 1000 Genomes Project and simulated phenotypes. We studied 200 sets of simulated phenotypes of trait Q2. An
important feature of this data set is that most SNPs are rare, with 87% of the SNPs having a minor allele frequency
less than 0.05. For rare SNP detection, in this study we performed a least absolute shrinkage and selection operator
(LASSO) regression and F tests at the gene level and calculated the generalized degrees of freedom to avoid any
selection bias. For comparison, we also carried out linear regression and the collapsing method, which sums the
rare SNPs, modified for a quantitative trait and with two different allele frequency thresholds. The aim of this paper
is to evaluate these four approaches in this mini-exome data and compare their performance in terms of power

and false positive rates. In most situations the LASSO approach is more powerful than linear regression and
collapsing methods. We also note the difficulty in determining the optimal threshold for the collapsing method
and the significant role that linkage disequilibrium plays in detecting rare causal SNPs. If a rare causal SNP is in
strong linkage disequilibrium with a common marker in the same gene, power will be much improved.

Background

With the rapid development of technologies, more and
more single-nucleotide polymorphisms (SNPs) have
become available and, in particular, most of the rare var-
iants can be identified using the next-generation sequen-
cing technique. However, detecting associated rare
variants that contribute to phenotypic variation is still a
huge challenge. Current approaches for testing rare var-
iants include grouping the rare variants based on a
threshold of the minor allele frequency (MAF) [1], sum-
ming the rare variants weighted by the allele frequencies
in control subjects [2,3], and clustering rare haplotypes
using family data [4]. Another approach is to use a
penalized regression, which can avoid the singular
design matrix that may result from rare variants by
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adding a penalty, such as the least absolute shrinkage
and selection operator (LASSO) and ridge penalties
[5,6]. In this analysis, we evaluated the LASSO regres-
sion, linear regression and the collapsing methods by
comparing their power and false positive rates. Based on
the results, we recommend the LASSO approach to
detect rare SNPs.

Methods

Data checking

In the Genetic Analysis Workshop 17 (GAW17) simu-
lated data set, there are no missing genotype data.
Among all the 24,487 SNPs, 91% have a MAF less than
0.1, 87% have a MAF less than 0.05, and 75% have a
MAF less than 0.01. Moreover, 39% of the SNPs have a
MAF less than 0.001, which leads to 9,433 SNPs being
singletons among 697 unrelated individuals. Owing to
the rareness of the variants, we do not examine Hardy-
Weinberg disequilibrium as a quality control procedure

© 2011 Guo et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:wei.guo3@case.edu
mailto:xiaofeng.zhu@case.edu
http://creativecommons.org/licenses/by/2.0

Guo et al. BMC Proceedings 2011, 5(Suppl 9):512
http://www.biomedcentral.com/1753-6561/5/59/512

in this study. Thus we include all SNPs and all indivi-
duals for the association analysis.

LASSO regression

To deal with the singular matrix in linear regression
caused by the rare variants, we adopt a statistical
method that effectively shrinks the coefficients of unas-
sociated SNPs and reduces the variance of the estimated
regression coefficients. Here, we apply the LASSO pen-
alty [7] to implement this regression analysis.

At the ith SNP site, we code the genotype as 0, 1, or 2
to represent 0, 1, or 2 copies of the minor allele, which is
the ith column in the design matrix represented by X.
For the quantitative trait y, the regression can be written:

y=a+Xp+e, (1)

where B is the vector of regression coefficients. In a
LASSO regression, the elements of § are the estimates
that minimize the loss:

Z yi—a—iﬁjxij +12|ﬂj|, )

where # is the number of individuals, L is the number
of SNP sites, and A is the tuning parameter. The LASSO
regression was implemented in the R package glmnet.

Gene-level association tests

The association is tested on the gene level. Within a gene,
the dependent variable is Q2 of the GAW17 data set, and
the independent variables are the genotypes of all the
SNPs in the gene. We use a model, with a LASSO penalty,
in which no interactions are involved. This model is
indexed as M1. To test for the association between a gene
and Q2, we use F statistics to test for the significance
between models M1 and MO0, where MO is taken to be the
model under the null hypothesis that f is a vector of
zeros. Let RSSy;; and RSSy;o be the residual sums of
squares of models M1 and MO, respectively. To correct for
selection bias, we use the generalized degrees of freedom
(GDF) [8], indicated by GDF(M), in the F tests for model
M1; the GDF is larger than the number of nonzero coeffi-
cients. The F statistic is constructed as follows:

b _ (RSSy; —RSS,) / (GDE(M) ~1) .
HASSO RSS,, /(n—GDF(M)) '

which asymptotically follows the F distribution with
(GDE(M) - 1,A n — GDF(M)) degrees of freedom. The
P-values for each gene are obtained from the F distribu-
tion given in Eq. (3).

GDF and 4
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In classical linear models, the number of covariates is
fixed; therefore the number of degrees of freedom is
equal to the number of covariates. However, the situa-
tion is different in a LASSO regression: The number of
nonzero coefficients can no longer accurately measure
the model complexity. For a LASSO regression, which
involves variable selection, the GDF was introduced [8]
to correct for selection bias and to accurately measure
the degrees of freedom of the obtained model. The GDF
of a model is defined as the average sensitivity of the
fitted values to a small change in the observed values.
The parametric bootstrapping method is used to esti-
mate the GDF [8,9].

Suppose that the observed value y;, i = 1, ..., n, is
modeled as y; + ¢, where y; is the expectation of y; and
¢ is Gaussian white noise with variance 6. An estimate
s? for 6> can be obtained by an ordinary regression.
Given a modeling procedure M: y — y, GDF(M), the
GDF of the modeling procedure M, can be estimated as
follows: (1) For ¢t = 1, ..., T, where T = 100 here, first
generate &, ~ normal(0, sz), i =1, ..., n. Then, evaluate
L(y +€,) on the basis of the modeling procedure. (2)
Calculate I:th as the regression slope from:

[(y +£,)=c+e;hM. (4)

(3) Finally, calculate:

N
GDF(M) = Z hM, )

i=1

Given GDF(M), the extended Akaike’s A Information
Criterion (AIC) is defined as:

M
D (v - 1) + 2AGDE(M)Jo . ©)

t=1

Thus the tuning parameter A is selected to be the one
that minimizes the extended AIC value.

Alternative methods: Fjj,car and combined multivariate
and the collapsing method for quantitative traits

As a comparison, we also carry out the F test based on
general linear regression for each gene, which we call
Flinear- A second alternative method is the combined
multivariate and collapsing (CMC) method [1], which is
a unified approach that combines collapsing and multi-
variate tests for a binary trait. We modify the CMC
method for the quantitative trait, in which markers are
divided into rare and common subgroups, on the basis
of a predefined allele frequency threshold (6); within the
rare subgroup an individual is coded 1 if a rare allele is
present at any of the variant sites and 0 otherwise. After
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this collapsing, we calculate the F test to test for the
association. We call this approach QCMC(9) for conve-
nience, and we consider ¢ = 0.01 and 0.05 in this paper.

Results

We evaluated the power and false-positive rates of the
F1 As50s Flinearr QCMC(0.01), and QCMC(0.05) tests
based on the 200 replicates of the GAW17 data set. The
significance level of the tests was first set to 1.6 x 107>,
which is the Bonferroni-corrected significance level of
0.05 adjusted by the number of genes, that is, 0.05/
3,205. However, because of the small sample sizes in the
GAW17 data set, the power of the association tests was
poor and could not be compared in our four tests.
Therefore we also used the weak significance level of
0.01 for method comparison.

We examined the answers to the GAW17 simulation
after our association analyses were completed. In the
answers, Q2 is influenced by 72 SNPs in 13 genes,
where the MAFs and effect sizes (;, the elements of 3)
could be found for each causal SNP. Thus the variance
contributed by each SNP to the phenotype could be cal-
culated as 24(1 —q)ﬁiz under the assumption of an
additive model, where g is the MAF. Therefore we cal-
culated the variance contribution for a gene using:

L
2241’(1_‘71')/31'2- (7)
i=1

As shown in Table 1, both genes VNN3 and VNNI
have a variance contribution of approximately 0.02;
SREBF1, BCHE, VLDLR, SIRTI1, PDGFD, LPL, and PLAT
have variance contributions of approximately 0.01 indi-
vidually; and RARB, GCKR, VWF, and INSIGI have var-
iance contributions between 0.0002 and 0.005. The
power is dependent on the variance attributed to the
gene.

We evaluated the power of the four methods based on
the 13 causal genes using the 200 replicates (Figure 1).
In general, the LASSO regression outperformed linear
regression for all causal genes and gained more than
10% power on the first four genes, as shown in Figure 1.
The QCMC(0.01) method performed better than the
QCMC(0.05) method because 91.7% of the MAFs of
causal SNPs were less frequent than 0.01. Except for the
VNNI and SREBFI genes, the LASSO method was more
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powerful than the two QCMC methods. This is quite
easy to understand. The VNNI gene has two causal
SNPs, which have MAFs of 0.006 and 0.17, and all the
causal SNP variants are less frequent than 0.005 in the
SREBF1 gene. For this reason, both the QCMC(0.01)
and the QCMC(0.05) tests are able to collapse the cau-
sal SNPs perfectly and thereby lead to a higher power
than the LASSO approach for these two genes.

In general, all the tests increased the power when a
gene’s contribution to the phenotype variation increased.
However, we observed some exceptions, possibly
because the power depends on many other factors, such
as allele frequency and linkage disequilibrium among
the SNPs within a gene. First, although their contribu-
tions to the phenotype variation were similar, we had
more power to detect VNN1, which consists of two cau-
sal SNPs, with one of them being common (MAF =
0.17), than VNN3, which consists of seven rare causal
SNPs. Second, for the GCKR gene, which has only one
causal SNP, we also had reasonable power, in contrast
to its small contribution to the phenotype variation. The
association for these two genes was concentrated in a
small number of causal SNPs and hence was easier to
detect. Third, the SIRT1 and VLDLR genes had a similar
number of SNPs, number of causal SNPs, MAFs, and
variance contribution; however, SIRT1 gained much
more power than VLDLR did. To understand why, we
examined the linkage disequilibrium among each of
these genes (using Haploview, http://www.broad.mit.
edu/mpg/haploview) (Figure 2). SIRT1 includes a com-
mon SNP, C10S3059 (MAF = 0.167), that is in linkage
disequilibrium with the causal rare SNP, C10S3048
(MAF = 0.002). The four gametes formed by these two
SNPs are CT (83.7%), CC (16.6%), GC (0.1%), and GT
(0.1%); and the D' value is 0.5 (R* = 0.003). Among the
55 significant tests of the SIRTI gene in 200 replicates,
81.8%, 60%, and 50.9% of the LASSO models selected
SNP C10S3059, C10S3048, or both, respectively, in their
M1 models. However, for VLDLR, although SNP
C9S341 (MAF = 0.095) was also in linkage disequili-
brium with the causal SNP C9S444, which has MAF =
0.001 (D' = 0.384 and R* = 0.002), it was not as com-
mon as C10S3059 and the linkage disequilibrium pat-
tern was not the same as that for SIRT1.

We also investigated the false-positive rates by count-
ing the frequency of the P-values that were not larger

Table 1 True variance contributions of 13 causal genes given in the GAW17 answers

VNN3 VNN1 SREBF1 BCHE VLDLR SIRT1 PDGFD LPL PLAT RARB GCKR VWF INSIG1
Number of SNPs 15 7 24 29 24 11 20 29 11 1 8 5
Number of causal SNPs 7 2 10 13 9 4 3 8 2 1 2 3
Average MAF of the causal SNPs 00206 0.0882 0.0022 00010 00013 00012 00029 00060 00021 00029 00122 00032 0.0007
Variance contribution 0.0239 00193 00125 00115 00111 0.0100 0.0098 0.0097 0.0090 0.0048 0.0034 0.0021 0.0002
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Figure 1 Power to detect 13 causal genes at the significance levels of 0.01 and 1.6 x 10~ in 200 replicates. The x-axis indicates the 13
genes sorted in decreasing order of the power of the Fiasso test, and the y-axis indicates the corresponding power. The power is shown as
solid black lines for the significance level 0.01 and as red dashed lines for the significance 1.6 x 107,
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Figure 2 Linkage disequilibrium plot for genes SIRT1 and VLDLR. Linkage disequilibrium plots generated from Haploview. The values of R
are shown in each cell. The color code in the Haploview plot follows the standard color scheme for Haploview: white, |D'] < 1, LOD < 2; shades
of pink/red, |D'| < 1, LOD = 2; blue, | D'| = 1, LOD < 2; red, |D'| = 1, LOD > 2.
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Table 2 False-positive rates at the significance levels of
0.01 and 1.6 x 10~° (the Bonferroni-corrected significance
level of 0.05)

Significance level  Fiasso Flinear  QCMC(0.01) QCMC(0.05)
0.01 0.02793  0.02094 0.02195 0.02233
160 x 107 0.00016  0.00011 0.00011 0.00013

than a specific significance level for all of the 3,192 non-
causal genes over the 200 replicates (Table 2). For some
unknown reason, all four methods had inflated false-
positive rates, and the inflation of the F 550 test was
slightly bigger than that of the other three tests, but not
significantly so.

Discussion and conclusions

In this study, we used the LASSO regression and calcu-
lated the GDF for the F tests to avoid selection bias.
This method requires using a parametric bootstrap to
obtain the GDF; therefore it is computationally not as
fast as the linear regression and collapsing methods. In
general, the Fj asso test is more powerful than the other
methods.

Linear regression is the least powerful approach
because of the large number of rare SNPs and because
no deduction is made in the large number of degrees of
freedom. The collapsing test requires specifying the pre-
defined allele frequency threshold for grouping rare
SNPs. It is difficult to determine this criterion optimally
when in reality the true disease model is never known.
For an extreme example, the QCMC(0.001) test was
identical to the linear regression approach and the
QCMC(0.1) test had no power at all in these data.
Therefore, from this point of view, we recommend the
LASSO approach for detecting rare SNPs.

Based on the power comparison of the SIRT1 and
VLDLR genes, we observed some evidence that linkage
disequilibrium played a significant role in detecting rare
causal SNPs. If a rare causal SNP is in strong linkage
disequilibrium with a common marker in the same
gene, it will perform much better in terms of power. It
would be of interest to further investigate the role of
linkage disequilibrium between common noncausal mar-
kers and rare causal SNPs on the power to detect rare
causal SNPs and hence determine a more powerful test.
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