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Abstract

The data set simulated for Genetic Analysis Workshop 17 was designed to mimic a subset of data that might be
produced in a full exome screen for a complex disorder and related risk factors in order to permit workshop
participants to investigate issues of study design and statistical genetic analysis. Real sequence data from the 1000
Genomes Project formed the basis for simulating a common disease trait with a prevalence of 30% and three
related quantitative risk factors in a sample of 697 unrelated individuals and a second sample of 697 individuals in
large, extended pedigrees. Called genotypes for 24,487 autosomal markers assigned to 3,205 genes and simulated
affection status, quantitative traits, age, sex, pedigree relationships, and cigarette smoking were provided to
workshop participants. The simulating model included both common and rare variants with minor allele
frequencies ranging from 0.07% to 25.8% and a wide range of effect sizes for these variants. Genotype-smoking
interaction effects were included for variants in one gene. Functional variants were concentrated in genes selected
from specific biological pathways and were selected on the basis of the predicted deleteriousness of the coding
change. For each sample, unrelated individuals and family, 200 replicates of the phenotypes were simulated.

Background
The state of the science for localization and identifica-
tion of genes that influence common complex diseases
has changed rapidly over the past 20 years. As labora-
tory costs continue to fall with the development of
more efficient high-throughput techniques, the field is
quickly proceeding toward studies that make use of gen-
ome-wide sequence data. There is as yet no consensus
on optimal, or even appropriate, statistical genetic
approaches for analyzing exome sequence data, and few
investigators have had experience analyzing such data
sets. This was the motivation for the Genetic Analysis
Workshop 17 (GAW17) “mini-exome” data set. The
GAW17 data set is a hybrid of simulated and real data.
Real exome sequence data from the 1000 Genomes Pro-
ject were used as the basis for simulating a common
complex disease and related quantitative risk factors.

Two different study designs were simulated, unrelated
individuals and large families, each with the same sam-
ple size.

1000 Genomes Project
The 1000 Genomes Project (http://www.1000genomes.
org) is designed to survey genetic variation at the
sequence level across multiple human population
groups. It includes individuals of European, East Asian,
South Asian, West African, and American Indian ances-
try. Three pilot projects for the 1000 Genomes Project
were completed in 2010: low-fold genome-wide sequen-
cing of 179 individuals, higher fold sequencing of two
parent-child trios, and exonic sequencing in 697 indivi-
duals [1]. Publicly available exon sequence data from the
1000 Genomes Project were used to provide a realistic
pattern of number and frequency of single-nucleotide
polymorphisms (SNPs), including cross-population var-
iation and linkage disequilibrium between sites, for the
GAW17 simulations.
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Methods
Genotype calling
SNP genotypes were obtained from the sequence align-
ment files provided by the 1000 Genomes Project for
their pilot3 study. When the GAW17 data set was gen-
erated, the 1000 Genomes Project had not yet posted
processed calls of these genotypes for each individual.
Thus the UnifiedGenotyper method from the Genome
Analysis Toolkit (GATK) package [2] was used for the
detection of SNPs and for the calling of SNP genotypes.
A male human genome based on National Center for
Biotechnology Information reference sequence 36
(RefSeq36) human genome release (human_b36_male.
fasta.gz) was used as the reference genome sequence for
both male and female alignments.
The UnifiedGenotyper method was run twice on the

alignment files. The first time it was allowed to scan
freely through the alignments to search for variation
against the reference sequence to be considered as SNP
candidates. Genotypes that were not homozygous for
the reference base allele were called for the candidate
SNPs detected. Because of time and technical con-
straints, GAW17 SNPs were chosen to be the subset of
candidate SNP genotypes that were called from an align-
ment of 10 or more sequencing reads. During the sec-
ond run, genotypes, including those homozygous for the
reference base, were called only for the subset of SNPs
selected in the first run.
This procedure had the advantages of being fast, cor-

rectly calling most of the true common SNP variants, gen-
erating a large volume of rare SNP variants, and
producing a genotype matrix with few missing genotypes
to simplify downstream preparation of the simulated data
set. However, it was not meant to detect the true natural
variation present in the 1000 Genomes Project. Thus there
were more rare SNPs in the GAW17 data set than those
described in the 1000 Genomes Project Consortium ana-
lyses of their own pilot data sets [1]. The enrichment of
rare variants in the GAW17 data set was caused in part by
artifacts introduced by, for example, lack of filtering.
The 1000 Genomes Project genotypes were not

phased, and some genotypes were missing as a result of
incomplete sequence coverage in some individuals. We
used the program fastPHASE [http://depts.washington.
edu/uwc4c/express-licenses/assets/fastphase/] to infer
missing genotypes and haplotypic phase. In the family
data set (described later), we used the program CHRSIM
[3] to drop the phased founder haplotypes throughout
the rest of the pedigree. Recombination was taken into
account, with a single obligate crossover event occurring
on each chromosome.
As noted, the GAW17 genotypes differ from the offi-

cial 1000 Genomes Project called genotypes for the

same individuals because of differing approaches to gen-
otype calling, inclusion or exclusion of regions of low-
fold coverage, and the inclusion of the imputed geno-
types in the GAW17 data set. Imputed genotypes were
not identified as such in the distributed data and were
treated as equally “real” as called genotypes in the phe-
notype simulations. These choices were motivated by a
focus on designing a data set that would be useful for
developing methods related to gene localization, identifi-
cation, and characterization, with the 1000 Genomes
Project data primarily serving as a source of sequence
data with realistic patterns of SNP distribution, allele
frequency, population variation, and linkage disequili-
brium. However, these decisions limited the utility of
the GAW17 data for population genetic analyses or for
examination of effects of genotype calling or data clean-
ing on gene finding.

Distributed genotype data
The called genotype data distributed for GAW17
included the inferred genotypes, such that all individuals
had genotypes for all base-pair positions, and phenotypes
were simulated on the basis of these data. Markers were
numbered sequentially on each chromosome and were
labeled C#S# (e.g., C1S254 is the 254th SNP on chromo-
some 1); marker locations were recorded as RefSeq36
base-pair coordinates. The 24,487 autosomal SNPs
detected in genotype calling were, for purposes of the
simulation, assigned to 3,205 genes based on the first
intersection found of the marker location and the base-
pair coordinates of all genes obtained from RefSeq36
annotations. SNPs that overlapped multiple genes were
assigned to only one of those genes. There were 1 to 231
SNPs per gene (mean = 7.64, SD = 14.00). Of the SNPs,
9,433 (38.4%) were private variants, occurring once in the
set of 697 unrelated individuals. Multiple private variants
carried by the same individual resulted in SNPs with
identical genotypes, including a SNP in the KDR gene
that was designated as functional in the phenotype simu-
lations which had identical genotypes to multiple non-
functional SNPs. Relatively few of the variants were
common; 74% had minor allele frequency (MAF) ≤ 0.01
and only 12.8% had MAF ≥ 0.05 (Figure 1). The median
MAF was 0.002, that is, three copies of the minor allele
in the sample of 697 unrelated individuals.

Unrelated individuals and pedigree samples
Two disparate sampling designs were used in the con-
struction of the simulated data. One sample consisted of
697 unrelated individuals, each of whom corresponded
to an individual from the 1000 Genomes Project data.
The 1000 Genomes Project subjects whose data were
used came from the CEPH (European-descent residents
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of Utah; n = 90), Denver Chinese (n = 107), Han Chi-
nese (n = 109), Japanese (n = 72), Luhya (n = 108), Tus-
can (n = 66), and Yoruban (n = 112) population groups.
The second sample configuration used in GAW17 simu-
lations consisted of 697 individuals in 8 extended
families with the genotypes for the 202 pedigree foun-
ders being taken from the 1000 Genomes Project data.
The founders of the pedigrees were chosen at random
from the unrelated individuals sample and included 12
CEPH, 18 Denver Chinese, 19 Han Chinese, 28 Japa-
nese, 50 Luhya, 66 Tuscan, and 9 Yoruban samples.
Because of a computational error, the genotypes of pedi-
gree founders were merged incorrectly across files,
resulting in an incomplete match between the genotypes
of the pedigree founders and the corresponding indivi-
dual from the unrelated individuals sample. This
affected a small proportion of genotypes (7%) but
impacted all pedigree founders. Approximately one-third
of the SNPs were unaffected, and for the two-thirds that
had substitutions, most had only one or two founders
with altered genotypes. Pedigree configurations were
adapted from the pedigrees used for simulated data in
Genetic Analysis Workshops 10 and 12 [4,5] and
included four generations and relatives as distant as sec-
ond cousins. The data set was designed such that all
family members had genotype and phenotype data avail-
able with no missing or unexamined relatives.
Because the pedigree founders were a subset of the

unrelated individuals, genetic diversity was restricted in
the families compared to the unrelated individuals sam-
ple. Of the 24,487 variant sites identified in the unre-
lated individuals sample, 10,703 were monomorphic in
the family sample with only one allele appearing. On the

other hand, some variants that were present in single
copies or at low frequency in the unrelated individuals
sample appeared many times in the family sample,
because they were transmitted by a founder with
numerous descendants. For example, C6S2981, which
was designated as functional in the phenotype simula-
tions, was present in 3 copies in the unrelated indivi-
duals sample and in 46 copies in the family sample.
C4S4935, also designated as functional in the simula-
tions, was present in a single copy in the unrelated indi-
viduals sample but in 31 copies in the pedigree sample.
There are 327 males and 370 females in the unrelated

individuals data set, which preserved the listed sex for
each of the 1000 Genomes Project samples. The family
set included 346 males and 351 females. Pedigree foun-
ders were allowed to have a different sex from the unre-
lated individuals whose genotypes they shared. However,
only autosomal markers were used in the GAW17 simu-
lations (i.e., X and Y data were not included). Assigned
ages were matched across the family and unrelated indi-
viduals data sets and ranged from 16 to 91 years, with a
mean of 41.8 years.
For the family data set, fully informative markers were

generated at each gene (recombination was not allowed
within genes) and used to compute identical-by-descent
(IBD) allele sharing at each gene location under the
rationale that family-based data sets were likely to have
previous short tandem repeat (STR) or high-density
SNP genotyping that could be used to estimate the IBD
allele sharing. These IBD matrices were provided as part
of the GAW17 data set.

Phenotype model
A common disease, with a prevalence of 30%, was simu-
lated along with three related quantitative risk factors,
Q1, Q2, and Q4. Smoking status (prevalence 25%) was
also simulated. Phenotype simulations were performed
multiple times to generate 200 replicates of the unre-
lated individuals and pedigree data sets. Note that the
genotype data remained constant across replicates, as
did age, sex, and pedigree configuration.
Knowledge about biological pathways and statistical

predictions regarding the potential deleteriousness of
coding variants was used in designing the simulation
model. Pathways for gene enrichment were selected from
the publicly available Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kegg/)
and the proprietary software Ingenuity Pathways Analysis
(IPA), version 8.7 (http://www.ingenuity.com). The vascu-
lar endothelial growth factor (VEGF) pathway was
observed to have numerous genes with available typed
SNPs and was therefore selected as the source of a subset
of the functional loci for phenotype simulations. The IPA
version of the VEGF signaling pathway was used as the

Figure 1 Minor allele frequency in the unrelated individuals
sample for the 15,054 SNPs present in multiple copies. Note
that the scale of the MAF categories is uneven, going by 0.5%
intervals for MAF < 0.01, by 1% intervals for MAF = 0.01–0.05, and
by 5% intervals thereafter.
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core source because it included most of the genes in the
KEGG VEGF signaling pathway as well as some addi-
tional upstream information, primarily relating to VEGF
transcriptional control. The overlap between the two data
sources was considered significant enough not to impede
the investigations of any researchers limited to the freely
available KEGG data set.
Genes influencing Q1 come primarily from the VEGF

pathway; those influencing Q2 were chosen without
reference to pathways and were primarily related to car-
diovascular disease risk and inflammation, and those
influencing latent disease liability also came primarily
from the VEGF pathway (a different section from the
one in which genes were selected for Q1). Effect sizes
for coding variants within genes were assigned using
PolyPhen and SIFT predictions of the likelihood that the
variant would be deleterious. The functional variants

included both rare and common alleles and a range of
effect sizes, with most having small effects but a few
having large effects that should be reliably detectable in
most replicates of the data set. Some genes contained a
single functional variant and others contained many.
Population origin of the 1000 Genomes Project partici-
pants was not used in the phenotype simulations. In
general, there was little disequilibrium between the
functional variants (Figures 2, 3, 4), with a few excep-
tions that were primarily private variants carried in a
single copy by the same individual (e.g., C3S4836 and
C10S3092 for Q2 and C4S1877 and C4S1889 for Q1).
Quantitative risk factors Q1, Q2, and Q4 were simu-

lated as normally distributed phenotypes. Disease was
simulated using a liability threshold model, and the top
30% of the distribution was declared affected. All SNP
effects were additive on the quantitative trait or liability
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Figure 2 Gametic disequilibrium (r2) between functional variants for Q1. Markers are shown in chromosomal order from bottom to top
and from left to right and are symmetric across the diagonal.
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scale, with each copy of the minor allele increasing the
mean trait value by an equal amount. Genotype by
environment effects were simulated for Q1. Because
genotype, age, and sex were held constant across repli-
cates, the variation in phenotype across replicates came
primarily from the residual polygenic and residual envir-
onmental components. The residual polygenic compo-
nents were correlated between relatives, by definition,
and also correlated between Q1, Q2, and latent liability.
The residual environmental components were unique to
each individual and were simulated to be weakly corre-
lated between Q1, Q2, and latent liability.

Q1
Quantitative risk factor Q1 was influenced by 39 SNPs
in 9 genes (see Table 1). There were 1–11 functional

variants per gene. Their MAFs in the 1000 Genomes
Project data ranged from 0.07% (i.e., a single copy of the
minor allele) to 16.5%. In all cases, the minor allele was
associated with higher mean Q1; the b column in the
table provides the displacement in mean levels of Q1 for
each copy of the minor allele. Q1 also had a residual
heritability of 0.44, resulting from variants at loci not
included in the current sequence data set. The residual
genetic component of Q1 was correlated with the resi-
dual genetic components of Q2 and latent liability.
There were also weaker environmental correlations
between Q1 and Q2 and latent liability. Values of Q1
were higher in smokers, and there was genotype by
smoking interaction for the effects of variants in the
KDR gene on Q1. Effects of the KDR variants were 50%
higher in smokers than in nonsmokers. (Note that for
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Figure 3 Gametic disequilibrium (r2) between functional variants for Q2. Markers are shown in chromosomal order from bottom to top
and from left to right and are symmetric across the diagonal.
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KDR the effect sizes given in Table 1 are those for non-
smokers.) Q1 also increased with age.

Q2
Q2 was influenced by 72 SNPs in 13 genes (see Table 2).
There were 1–13 functional variants per gene. MAFs ran-
ged from 0.07% to 17.07%. In all cases, the minor allele
was associated with higher mean Q2. Q2 had a residual
heritability of 0.29. The residual genetic component of
Q2 was correlated with the residual genetic components
of Q1 and latent liability. There were also weaker envir-
onmental correlations between Q2 and Q1 and latent lia-
bility. Q2 was not influenced by age, sex, or smoking
status.

Q4
Q4 had a heritability of 0.70, but none of this genetic
component was due to genes in this sequencing set (i.e.,
it was not influenced by any of the genotyped exonic
SNPs). Q4 was lower in smokers, decreased with age, and
was lower in females. Q4 was protective; that is, indivi-
duals with higher levels of Q4 had lower risk of disease.

Affection status
A normally distributed latent liability trait (not included
in the distributed phenotype data) was simulated; it was
influenced by 51 SNPs in 15 genes with 1–24 functional
variants per gene (see Table 3). MAFs of these variants
ranged from 0.07% to 25.8%. In all cases, the minor
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Figure 4 Gametic disequilibrium (r2) between functional variants for latent liability. Markers are shown in chromosomal order from
bottom to top and from left to right and are symmetric across the diagonal.
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allele was associated with higher mean liability. This
latent liability trait was also higher in smokers and
increased with age. Disease risk was a function of this
latent liability, Q1, Q2, and Q4:
Liability to disease = latent liability + Q1 + Q2 – Q4. (1)
Using this formula, a quantitative liability score was

calculated for each individual, and the top 30% of the
distribution in each simulation replicate was declared
affected. A consequence of this assignment was that
each replicate had the same number of affected

Table 2 Effects on Q2

Gene SNP MAF b

BCHE C3S4834 0.000717 0.232562

BCHE C3S4836 0.000717 0.352589

BCHE C3S4856 0.000717 0.311344

BCHE C3S4859 0.002152 0.557489

BCHE C3S4860 0.000717 0.339017

BCHE C3S4862 0.000717 0.93321

BCHE C3S4867 0.000717 0.67704

BCHE C3S4869 0.000717 1.15994

BCHE C3S4873 0.002869 0.588113

BCHE C3S4874 0.000717 1.06857

BCHE C3S4875 0.000717 1.15207

BCHE C3S4876 0.000717 0.798247

BCHE C3S4880 0.001435 0.164995

GCKR C2S354 0.012195 0.396642

INSIG1 C7S5132 0.000717 0.0983783

INSIG1 C7S5133 0.000717 0.106056

INSIG1 C7S5144 0.000717 0.237783

LPL C8S442 0.015782 0.490165

LPL C8S476 0.000717 0.725673

LPL C8S530 0.001435 0.800024

PDGFD C11S5292 0.008608 0.60155

PDGFD C11S5299 0.000717 0.823159

PDGFD C11S5301 0.000717 0.982146

PDGFD C11S5302 0.001435 0.814925

PLAT C8S1741 0.003587 0.71858

PLAT C8S1742 0.000717 0.891241

PLAT C8S1758 0.001435 0.86814

PLAT C8S1770 0.000717 0.58405

PLAT C8S1772 0.001435 0.219187

PLAT C8S1773 0.001435 0.515733

PLAT C8S1799 0.005739 0.190653

PLAT C8S1811 0.001435 0.0753783

RARB C3S635 0.000717 0.653224

RARB C3S679 0.005022 0.632142

SIRT1 C10S3048 0.002152 0.825893

SIRT1 C10S3050 0.002152 0.956865

SIRT1 C10S3058 0.000717 0.393157

SIRT1 C10S3092 0.000717 0.352589

SIRT1 C10S3093 0.000717 0.47264

SIRT1 C10S3107 0.000717 0.99946

SIRT1 C10S3108 0.000717 0.52925

SIRT1 C10S3109 0.000717 0.57047

SIRT1 C10S3110 0.002152 0.117719

SREBF1 C17S1007 0.002152 0.548739

SREBF1 C17S1009 0.000717 0.716057

SREBF1 C17S1024 0.004304 0.447239

SREBF1 C17S1030 0.000717 0.734055

SREBF1 C17S1043 0.004304 0.459494

SREBF1 C17S1045 0.003587 0.30998

SREBF1 C17S1046 0.002869 0.604567

SREBF1 C17S1048 0.001435 0.297328

Table 1 Effects on Q1

Gene SNP MAF b

ARNT C1S6533 0.011478 0.589734

ARNT C1S6537 0.000717 0.642689

ARNT C1S6540 0.001435 0.323662

ARNT C1S6542 0.002152 0.488219

ARNT C1S6561 0.000717 0.625721

ELAVL4 C1S3181 0.000717 0.795093

ELAVL4 C1S3182 0.000717 0.328748

FLT1 C13S320 0.001435 0.18047

FLT1 C13S399 0.000717 0.457361

FLT1 C13S431 0.017217 0.732566

FLT1 C13S479 0.000717 0.839669

FLT1 C13S505 0.000717 0.38582

FLT1 C13S514 0.000717 0.549816

FLT1 C13S522 0.027977 0.623466

FLT1 C13S523 0.066714 0.653351

FLT1 C13S524 0.004304 0.596704

FLT1 C13S547 0.000717 0.549214

FLT1 C13S567 0.000717 0.0905862

FLT4 C5S5133 0.001435 0.120761

FLT4 C5S5156 0.000717 0.385374

HIF1A C14S1718 0.000717 0.251622

HIF1A C14S1729 0.002152 0.329088

HIF1A C14S1734 0.012195 0.220448

HIF1A C14S1736 0.000717 0.228202

HIF3A C19S4799 0.000717 0.174668

HIF3A C19S4815 0.000717 0.51468

HIF3A C19S4831 0.000717 0.265181

KDR C4S1861 0.002152 0.598271

KDR C4S1873 0.000717 0.715613

KDR C4S1874 0.000717 0.503025

KDR C4S1877 0.000717 1.17194

KDR C4S1878 0.164993 0.149975

KDR C4S1879 0.000717 0.610938

KDR C4S1884 0.020803 0.318125

KDR C4S1887 0.000717 0.312058

KDR C4S1889 0.000717 1.17194

KDR C4S1890 0.002152 0.417977

VEGFA C6S2981 0.002152 1.13045

VEGFC C4S4935 0.000717 1.40529
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individuals, although the identity of these individuals
varied across replicates. The effect sizes in Table 3 are
for liability to disease.
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Table 3 Effects on disease liability

Gene SNP MAF b

AKT3 C1S11396 0.000717 0.340456

BCL2L11 C2S2286 0.000717 0.274592

BCL2L11 C2S2288 0.002869 0.563598

BCL2L11 C2S2307 0.000717 0.606816

ELAVL4 C1S3181 0.000717 0.64359

ELAVL4 C1S3182 0.000717 0.214219

HSP90AA1 C14S3630 0.000717 0.0579258

HSP90AA1 C14S3695 0.000717 0.152617

HSP90AA1 C14S3704 0.003587 0.0789197

HSP90AA1 C14S3706 0.258250 0.0874168

NRAS C1S5748 0.000717 0.409806

PIK3C2B C1S9164 0.001435 0.205094

PIK3C2B C1S9165 0.000717 0.141183

PIK3C2B C1S9172 0.004304 0.508901

PIK3C2B C1S9173 0.001435 0.12026

PIK3C2B C1S9174 0.000717 0.634406

PIK3C2B C1S9189 0.006456 0.454308

PIK3C2B C1S9200 0.000717 0.679158

PIK3C2B C1S9222 0.000717 0.38177

PIK3C2B C1S9250 0.001435 0.358232

PIK3C2B C1S9266 0.002869 0.184476

PIK3C2B C1S9267 0.002152 0.504508

PIK3C2B C1S9306 0.000717 0.239692

PIK3C2B C1S9320 0.000717 0.653693

PIK3C2B C1S9333 0.000717 0.703217

PIK3C2B C1S9346 0.000717 0.29823

PIK3C2B C1S9373 0.000717 0.399922

Table 2 Effects on Q2 (Continued)

SREBF1 C17S1055 0.001435 0.957889

SREBF1 C17S1056 0.000717 0.46384

VLDLR C9S367 0.000717 0.510889

VLDLR C9S376 0.002869 0.543897

VLDLR C9S377 0.001435 1.20543

VLDLR C9S391 0.000717 0.483147

VLDLR C9S430 0.000717 0.677573

VLDLR C9S443 0.001435 0.61953

VLDLR C9S444 0.001435 0.901646

VLDLR C9S497 0.000717 0.731422

VNN1 C6S5378 0.005739 0.466305

VNN1 C6S5380 0.170732 0.248606

VNN3 C6S5412 0.000717 0.551757

VNN3 C6S5426 0.032999 0.110779

VNN3 C6S5439 0.000717 0.127341

VNN3 C6S5441 0.098278 0.268411

VNN3 C6S5446 0.000717 0.528353

VNN3 C6S5448 0.000717 0.581462

VNN3 C6S5449 0.010043 0.680317

VWF C12S181 0.000717 0.76848

VWF C12S211 0.005739 0.337463

Table 3 Effects on disease liability (Continued)

PIK3C2B C1S9391 0.000717 0.582382

PIK3C2B C1S9423 0.000717 0.590111

PIK3C2B C1S9432 0.010760 0.461306

PIK3C2B C1S9445 0.000717 0.582247

PIK3C2B C1S9446 0.000717 0.477664

PIK3C2B C1S9449 0.000717 0.647146

PIK3C2B C1S9455 0.002869 0.518095

PIK3C2B C1S9457 0.000717 0.497112

PIK3C3 C18S2475 0.000717 0.695313

PIK3C3 C18S2492 0.017217 0.576351

PIK3R3 C1S2919 0.000717 0.414798

PRKCA C17S4578 0.166428 0.39334

PRKCA C17S4581 0.000717 0.129034

PRKCB1 C16S1894 0.000717 0.45754

PTK2 C8S4825 0.000717 0.0164796

PTK2 C8S4839 0.000717 0.142502

PTK2B C8S886 0.000717 0.466067

PTK2B C8S900 0.001435 0.111154

PTK2B C8S909 0.001435 0.431062

RRAS C19S4929 0.001435 0.34384

RRAS C19S4937 0.001435 0.462103

SHC1 C1S7061 0.006456 0.206036

SOS2 C14S1381 0.000717 0.613801

SOS2 C14S1382 0.003587 0.633247
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