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Abstract

In this study, we analyze the Genetic Analysis Workshop 17 data to identify regions of single-nucleotide
polymorphisms (SNPs) that exhibit a significant influence on response rate (proportion of subjects with an
affirmative affected status), called the affected ratio, among rare variants. Under the null hypothesis, the distribution
of rare variants is assumed to be uniform over case (affected) and control (unaffected) subjects. We attempt to
pinpoint regions where the composition is significantly different between case and control events, specifically
where there are unusually high numbers of rare variants among affected subjects. We focus on private variants,
which require a degree of “collapsing” to combine information over several SNPs, to obtain meaningful results.
Instead of implementing a gene-based approach, where regions would vary in size and sometimes be too small to
achieve a strong enough signal, we implement a fixed-bin approach, with a preset number of SNPs per region,
relying on the assumption that proximity and similarity go hand in hand. Through application of 100-SNP and 30-
SNP fixed bins, we identify several most influential regions, which later are seen to contain some of the causal
SNPs. The 100- and 30-SNP approaches detected seven and three causal SNPs among the most significant regions,
respectively, with two overlapping SNPs located in the ELAVL4 gene, reported by both procedures.

Background
The completion of the Human Genome Project in 2003
and the International HapMap Project in 2005 gave
researchers access to exciting new technological tools in
understanding human genetics, including large available
databases. This new level of information has led to efforts
to better understand the relationship between genetics
and disease. At the forefront of these efforts are the gen-
ome-wide association studies, methods that rely on large-
scale scanning of the association between genetic variants
and particular diseases [1]. Since 2005, these studies have
led to a better understanding of genetic susceptibility to
more than 40 common diseases, including type II diabetes,
Parkinson’s disease, and prostate cancer [2].
Even before 2005, many methods had been developed to

reconcile genetic variants and vulnerability to disease. The
common disease/common variant (CDCV) hypothesis,

which suggests that “common variants may hold the
secrets to many disease susceptibilities” [2], has been a
long-held principle. Under this theory, a list of common
SNPs and association mapping can be used to better
understand which mutations are related to disease sus-
ceptibility. In essence, the genetic factors underlying com-
mon diseases will be alleles that are themselves quite
common in the population at large [3].
According to the American Journal of Psychiatry in

2009, common SNP variants are by convention defined
to vary “on at least 5% of chromosomes in the popula-
tion” [1]. The CDCV strategy suggests that many differ-
ent common SNPs have small effects on each disease and
that some could be found by testing enough SNPs and
subjects [2].
Recently, more attention has been given to the possible

influence of rare variants on this same disease susceptibil-
ity [4]. A rare variant is defined by a frequency of less than
1% [5]. Although the methods used in genome-wide asso-
ciation studies (GWAS) currently struggle to powerfully
address these potential rare SNP associations, efforts such
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as the 1000 Genomes Project may extend systematic
GWAS methods to the 1–5% frequency range [2].
Blangero et al. [6] recently suggested that “uncommon or
rare genetic variants can easily create synthetic associa-
tions that are credited to common variants” and called for
follow-up in future GWAS studies. This field of rare var-
iants will be the focus of this project.
It should be noted that the methods proposed were

developed and implemented without prior knowledge of
the true causal SNPs or of the model generation pro-
cess. However, after implementation, we use this infor-
mation to evaluate the success of our procedure.

Methods
Data set
Genetic Analysis Workshop 17 (GAW17) contains a simu-
lated data set of 3,205 autosomal genes with 24,487 single-
nucleotide polymorphisms (SNPs) genotyped on 697 sub-
jects. The 1000 Genomes Project provided SNP genotypes
for their pilot3 study. SNPs with missing data are imputed
by fastPhase. Most of the allele frequencies for these mar-
kers are rare with a minor allele frequency (MAF) less
than 1% (i.e., about 74%). Three quantitative trait values
(Q1, Q2, and Q4) and affected status are generated in
each simulated unrelated-individual data set. Affected
status and genotype information are the focus of our case-
control study. Two hundred simulations are conducted,
each containing 209 affected cases and 488 unaffected
control subjects. The genotypes are fixed for the 200 simu-
lation replicates; however, the model-dependent pheno-
types are different among simulations [7].

Prominence of private SNPs in the data
A simple exploratory analysis of the SNPs at hand shows
that the number of mutant alleles is heavily skewed toward
low numbers. In fact, there are more private variants
(9,433) than there are common variants with MAF > 1%
(6,356). This motivates the exploration into these extre-
mely rare variants, because they make up such a large pro-
portion of the data.

Collapsing of SNP information in the data
Because any one given private SNP can have only a lim-
ited influence on the data, we must use some sort of col-
lapsing method (a way to combine the information of
several SNPs) to attain any sort of power for association
testing. Several methods have been proposed to achieve
this end. SNPs from the same genes could be combined;
the same could be done for SNPs from the same pathway
of genes, or even an arbitrary chromosomal region
defined by base-pair positions on a chromosome [7].
However, both of these methods have procedural limits.
The genes vary in number of SNPs contained, and 38%
of genes in the data contain only one SNP, meaning no

information would be merged within those regions.
Moreover, 68% of genes contain fewer than five SNPs,
meaning the enhancement of signal would be extremely
limited. Further, use of pathways would alleviate some of
these problems but would also require extra outside
information, which would further complicate our
procedure.

Collapsing method: fixed bins
We implement a straightforward approach to collapse
several SNPs in the data. We order the SNPs and divide
them into a chosen number of fixed bins. We rely on the
assumption that SNPs in close proximity to each other
within a chromosome will exhibit some level of associa-
tion. This allows for many of the SNPs within the same
genes to be grouped together and permits a combination
of nearby, smaller genes to merge their respective infor-
mation, which would otherwise be difficult to extract.
This also adds the bonus that each fixed bin is of equal
size.
We have both biological and genetic reasons for bin-

ning fixed numbers of SNPs. Our purpose is not to iden-
tify individual SNPs but to specify localized regions that
contain candidate SNPs. We first attempted the method
with a gene-based approach but found that the results
were quite weak, mainly because many of the genes were
relatively short and there were few private SNPs within
each gene. With larger regions, we have more private
SNPs in general within each gene, allowing us to detect a
significant result. Within a chromosome, nearby SNPs
may have some association through linkage disequili-
brium. Merging the information of nearby genes will
allow us to accentuate a signal by incorporating nearby
associated SNPs, even if they are not biologically causal
themselves. Our fixed-bin method also ensures that
regions are nonoverlapping. Although this is not the case
in our simulated data, it is possible that some SNPs may
overlap more than one gene (or chosen genetic region),
inflating type I error, or that some may fail to belong in
any region (guaranteeing that they will not be identified).
The fixed-bin approach allows a simple, computationally
efficient method for enhancing signal.
In this study, we execute a fixed-bin approach with

bin sizes of 100 and 30 SNPs, respectively. We have
determined that our procedure is quite robust to any
bin size between these two numbers.

Difference in proportions between case and control
groups: extreme rare variants
We first divide all the SNPs into regions. Although we rely
on proximity within a chromosome to merge data, we pro-
hibit regions from containing SNPs from different chro-
mosomes. To this end, we cut off regions at the end of
each chromosome. For the 100-SNP window approach,
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we have 253 regions. Those regions at the end of the chro-
mosome are either left smaller than 100 SNPs or, if they
are below a certain threshold of length (in this case we set
the threshold at 25 SNPs), they are merged with the pre-
vious region to create a slightly larger one. An analogous
approach is used with a fixed-bin size of 30 SNPs with 816
regions. Within each region, we are interested in the ratio
of extreme rare variants (i.e., only one allele difference in
the SNP) and in the difference of this value from those
that fall into the case and control categories. We focus
only on affected status; thus we define the case group as
those with affected status = 1 and the control group as
those with affected status = 0. Within each region we
define the following value:

p
i

i = (number of private variants in fixed bin , case)
(numberr of SNPs in each fixed bin )i

, (1)

where i = 1, …, number of fixed bins.

Significance calculated by permutation test
Our method can be easily extended to analyze rare SNPs
that are rare but not private (i.e., a few minor alleles). In
our analysis, we focus on private variants. We use a stan-
dard nonparametric permutation test to determine
whether the proportion of extreme variants in case sub-
jects is significant. To do so, we take the SNPs from each
interval and randomly permute the affected status. We
then define the permutated p-value for fixed bin i as the
number of {observed pi < permuted pi}/1,000. That is,
those regions where the observed pi is significantly higher
than usual will have a low p-value, thus demonstrating sig-
nificance. If only one simulation were available, we would
set a cutoff for the p-value (5%) and report those regions
with p-value less than 5% to be potentially significant
regions. However, if we use more than one simulation,
we must find a way to combine these simulation-by-
simulation reports of significant regions.

Aggregation of significance through all 200 simulations
We propose a method to order intervals by significance.
In this case, we wish to report which regions are rela-
tively most significant. We empirically report the 10 most
significant regions, with the assumption that this might
narrow down future analysis by the scientist. To gauge
significance, we define the term return frequency, which
is simply a count of the number of times a region is sig-
nificant over the 200 simulations.
Although the p-value threshold for each of the simula-

tions is 0.05, in order for a region to be returned as one of
the most significant regions in our results, it must pass
this threshold many times. In fact, all of our top 10 regions
exceed this threshold by more than 50 times. A Poisson
estimate of this probability is: 1050e–10 / 50! ≈ 10–19.

Results
Figures 1 and 2 summarizes the return frequency for all
regions, significant or not, for both the 100- and
30-SNP approaches.
Based on the p-value threshold of 0.05, the expected

return frequency for a certain region in the 200 simula-
tions is about 10 (i.e., 200 × 0.05). As approximated by
the Poisson distribution, a return frequency greater than
20 is almost three standard deviations away, which is an
extreme situation. The top 10 return regions listed for
both the 30-SNP and 100-SNP fixed bins show return
frequencies greater than 50.

100-SNP fixed-bin approach with return frequency
The results for the return frequency are shown in Table 1.
We order the top 10 most significant regions and deter-
mine that three of them contain causal SNPs. Region 179
contains the gene SOS2 (causal SNP C14S1381), and
region 6 contains three causal SNPs (C1S3181, C1S3182,
C1S2919). Also in the top 10 was the region containing
the gene SREBF1 (10 causal SNPs, 3 of which are private
[C17S1009, C17S1030, C17S1056]).

30-SNP fixed-bin approach with return frequency
In Table 1, we list the top 10 most significant regions,
and two of them contain causal SNPs. One of these
regions contains two causal SNPs (C1S3181, C1S3182)
that were also identified by the 100-SNP fixed-bin
approach. Another region contains the gene VEGFC,
which contains one causal SNP (C4S4935). This is parti-
cularly promising because this gene contains only that
one SNP.

Discussion
Although many methods can pinpoint influential common
variants, there has been a widespread struggle to pinpoint
influential private variants. The promise of our results lies
in the fact that we are able to identify regions that do
indeed contain several causal private variants. Although
seven and three causal SNPs are not huge numbers, by a
conservative estimate in which we assume that all causal
private SNPs are uniformly distributed throughout
regions, we would expect our 10 most influential regions
out of the 253 and 816 regions in the 100-SNP and 30-
SNP fixed-bin approaches, respectively, to show 90(10/
253) ≈ 3.56 and 90(10/816) ≈ 1.10 out of the 90 true causal
private SNPs. Moreover, we can almost be sure that a
gene-based approach would struggle to pick up the causal
SNP C4S4935 in VEGFC, which is composed of only one
SNP.
Of course, there are several drawbacks to these results.

First, even without knowledge of the causal SNPs, we
know that our identification of influential regions takes
us only as far as the region at hand. It does not allow us
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Figure 1 Significance return frequency by region using the 100-SNP fixed-bin approach.

Figure 2 Significance return frequency by region using the 30-SNP fixed-bin approach.
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to pinpoint exactly which SNPs within this region are
influential. However, as noted before, the narrowing
down of potential regions can save countless time and
money for the scientist. A region here contains 100 or 30
SNPs, as opposed to the approximately 25,000 in the
complete data set.
Second, our motivation is that we are anticipating sev-

eral causal rare SNPs in the same gene and in several
patients. Suppose that variants in different genes are
responsible. Then methods that incorporate interaction
between genes are needed to detect it. This will boost
power significantly. However, we see numerous false posi-
tives in our results. In fact, the majority of our results
show up as false positives. To a certain extent, this can be
expected, because the influence of any one private variant
is small and it is quite difficult to determine causality
when private variants are so sparse. Expectations have to
be tempered when dealing with such private variants.
Furthermore, the specific data set at hand may be specifi-
cally troubling for this procedure, although this same
struggle may not be imitated in real data. For all 200 simu-
lations, the same genotype is used. Thus it may be possible
that any association by chance may be propagated through
all 200 simulations. In essence, this “false positive” may
indeed be a real signal from the data, just not an intended
one. In fact, an exploratory analysis shows that many false-
positive SNPs highly correlate with causal SNPs, so it is no
surprise that they show up in the results.
In our approach, we report the results of fixed bin sizes

of 30 and 100, although our procedure can be generalized

to any size bin. Choosing a bin size much lower than 30
will aggregate too little information because too few pri-
vate SNPs will be contained within each region to begin
with. Choosing a bin size much larger than 100 will sacri-
fice specificity for the scientist when a much larger region
of influence is identified with many more candidate cau-
sal SNPs; it will also lead to the possibility of variation
contaminating the signal. We have implemented our
method for bin sizes between the two extremes (e.g., with
a bin size of 50) and have seen similar results, suggesting
that our procedure is robust to any choice of size within
this range.
Although the simplicity of our method means that we

do not directly address such issues as density of markers
throughout the chromosome, we can recommend that
the choice of bin size be varied within this acceptable
range based on such knowledge.
Although our analysis is nonparametric in the sense

that it is based on “relative” significance of regions, we
could attempt to implement an absolute cutoff for sig-
nificance. This would help answer the question of
whether there any significant regions, as opposed to the
question we answer: Which regions have the greatest
potential to be significant?

Conclusions
The scientific community has had difficulty pinpointing
influential private variants, but our procedure attempts to
solve this challenging problem, with some degree of suc-
cess. We observe that using a fixed-bin approach is some-
times more effective than groupings based on genes, some
of which contain only one SNP, at least in this particular
data set. At the same time, the method relies less on out-
side information than analyses based on gene pathways do.
In the end, our procedure reaches the roadblock of

numerous false positives, although some may be inherent
risks of the method of data generation in play. Neverthe-
less, our procedure retains its generality to many types of
data sets, not just the one at hand. Our results with
respect to these data are not mind-blowing, but this per-
formance is specific to this data set. Knowing the linear
regression nature of the data generation, one could imple-
ment simpler and most likely more effective procedures.
However, in real life this knowledge is not available, and
we attempt to design a procedure that can perform on any
type of data set, not one that simply performs the best on
this simulated one.
Ultimately, the fixed-bin approach we describe here

offers a method whose value is its simplicity and ease of
implementation in the face of a challenging problem.
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