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Abstract

The goals of our analysis were to map functional loci, which contribute to the case-control status of a trait of
interest, using large pedigrees. We used logistic regression fitted with the generalized estimation equation to test
associations between a dichotomous phenotype and all genotyped common and rare single-nucleotide
polymorphisms. In addition to the association study, we also developed and applied a simple and fast identical-by-
descent-based test to identify loci that were shared among affected individuals more often than expected by
chance. Among the top significant loci, we assessed the statistical power and the false discovery rate of both
methods. We also demonstrated that family-based studies, compared with the standard population-based
association studies, have great values and advantages for the discovery of multiple rare causal variants.

Background
Population-based genome-wide association studies
(GWAS) using unrelated individuals are becoming
increasingly popular in genetic research. Recent large
GWAS have shown that common genetic variants are
involved in common diseases, but most of the variants
found in this way account for only a small portion of the
trait variance. On the other hand, accumulating evidence
from candidate-gene-based resequencing suggests that
many rare genetic variants contribute to the trait variance
of common diseases. Pedigree resources are convention-
ally believed to be powerful for identifying rare variants
and are considered appropriate for the application of
linkage strategies. However, linkage analysis often
requires nuclear families characterized by multiple infor-
mative offspring and is more applicable for quantitative
traits [1,2]. Other methods, which exist to appropriately
perform association analyses of dichotomous traits with
extended pedigrees, are often computationally impracti-
cal for large-scale genome-wide association analyses.
Hence we are motivated to explore alternative strategies
that can be efficiently carried out on a genome-wide

scale and can appropriately handle familial relationships
in arbitrary-structured pedigrees.
The family data from Genetic Analysis Workshop 17

(GAW17) provide us with a great opportunity to investi-
gate appropriate approaches for the family-based associa-
tion tests. The approaches we consider in this work
include fitting a logistic regression model with adjust-
ments of covariates and a novel approach using identical-
by-descent (IBD) measures.

Methods
We used the family data sets provided by GAW17. This
data set had 697 subjects (209 affected and 488 unaffected
individuals) from 8 extended families and fully informative
markers for 3,205 genes. Assuming that recombination
was not allowed within genes, IBD scores were also pro-
vided at each gene location (see Almasy et al. [3] for addi-
tional details of the GAW17 data). Using the case-control
data sets, we explored two different types of methods:
association analysis and IBD linkage analysis.

Association analyses
Throughout this paper, we assume an additive model for
the genetic effects. The association analyses were based
on the logistic regression model. Preliminary analysis
showed that both Age and Smoke are independent risk

* Correspondence: anbupalamt@gis.a-star.edu.sg
Human Genetics Group, Genome Institute of Singapore, 60 Biopolis Street
#02-01, Singapore 138672

Liu and Thalamuthu BMC Proceedings 2011, 5(Suppl 9):S31
http://www.biomedcentral.com/1753-6561/5/S9/S31

© 2011 Liu and Thalamuth; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:anbupalamt@gis.a-star.edu.sg
http://creativecommons.org/licenses/by/2.0


factors and are significantly associated with the case-con-
trol status. Hence the resulting final logistic regression
model is:
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where yi is the affected status of individual i, case sam-
ples are coded 1 and control samples are coded 0, and gi is
the genotype of individual i at a given SNP marker. The
intercept parameter μ is called the base line odds and the
b parameters represent log odds ratio corresponding to
the variables used in the model. Assuming that minor
allele B is the risk allele, gi is coded 0, 1, or 2 correspond-
ing to genotypes AA, AB, or BB, respectively.
Because the individuals are no longer independent in the

large pedigrees, the joint likelihood function for all indivi-
duals has a complicated form. We used the generalized
estimation equation (GEE) [4,5] with fixed covariance
structure to fit the logistic regression (Eq. (1)). We com-
puted the kinship matrix of the 697 individuals using the
kinship program in the R package [6] and used the kinship
matrix to specify the covariance matrix in the GEE.
Single-nucleotide polymorphisms (SNPs) with minor

allele frequency (MAF) less than 1% were considered rare
in our work. In the first stage, we excluded rare SNPs
before the association analysis and considered only com-
mon causal variants. A rare variant, as part of a group of
rare variants in the same gene, is also more likely to con-
tribute to the susceptibility of a disease. However, if we
apply logistic regressions directly on the rare variants, the
GEE will fail because of the singularity in the correlation
matrix. The association methods developed for common
variants will have limited efficiency for mapping rare var-
iants unless enormous sample sizes exist. Grouping and
collapsing rare variants into meaningful groups (e.g., by
functional genes, by pathways) has been shown to be a fea-
sible option to improve efficiency in studying rare variants
[7]. Therefore, in the second stage of analysis, we collapsed
rare SNPs within the same gene and evaluated their asso-
ciation with the disease trait. We noticed that for 99% of
the 3,205 genes, the chance for an individual to carry 4 or
more rare alleles in a gene is no larger than 0.0072. Hence
we define a combined genotype of a set of grouped rare
variants based on the total count of rare alleles as follows:
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After assigning a collapsed genotype to grouped rare
variants, we evaluate the association between collapsed
genotypes and disease outcomes using the logistic
model specified in Eq. (1).

IBD analysis
Phenotypes of relatives are similar because relatives share
similar environment and similar genetic variants (geno-
types or haplotypes). Genotypes are similar because these
relatives share genes that are identical by descent. Intui-
tively, the disease-associated loci are more likely to be
similar in case samples than in control samples. Compar-
ing the distributions of IBD scores between arbitrary pairs
of case subjects and pairs of control subjects appears to be
a promising approach to identify loci associated with a
trait. Based on this general idea, we formulated a new test
using a 2 × 3 contingency table that can identify loci
shared among affected individuals more often than
expected by chance. Our algorithm considers all relation-
ships simultaneously and can be used to test association in
pedigrees of arbitrary size.
Suppose that K extended families with multiple affected

offspring are randomly collected from a natural human
population. Consider a SNP marker with two alleles, A
and B, that is genotyped for all individuals in these K
extended families. For an arbitrary pair of samples i and j
within a family k, the IBD score between them at a SNP
marker is defined as 0, 0.5, or 1 if 0, 1, or 2 of their
shared alleles, respectively, arose from the same allele in
an earlier generation. Between any two individuals, there
are 14 combinations of their IBD scores and genotypes.
We list all 14 states in Table 1 and denote these states by
S1, S2, …, S14. Assuming that allele B is the disease allele,
a pair of individuals shares exactly two copies of inherited
B alleles only in S1, exactly one copy in S2, S4, and S7, and
one copy with probability 0.5 in S8.
Under the null hypothesis of no association, the fre-

quencies of the 14 states are the same in affected and
unaffected samples. Consequently, the pairs of affected
and pairs of unaffected individuals have equal frequencies
of sharing zero, one, or two copies of B alleles IBD. On
the other hand, under the alternative hypothesis of asso-
ciation, we expect to observe that pairs of affected indivi-
duals share at least one copy of the B allele with greater
chance. This also means, under the alternative hypoth-
esis, that we expect that affected individuals involved in
forming pairs will share at least one copy of the inherited
B allele with a greater chance than unaffected individuals.
Based on this general idea, we tabulate affected indivi-

duals and unaffected individuals by a 2 × 3 contingency
table in the following way. The affected individuals can
be separated into three groups: Group 1 contains those
individuals who form pairs IBD at both alleles; group 2
contains individuals who form pairs IBD at exact one
allele and who are not in group 1; and group 3 contains
the rest of the individuals. Similarly, unaffected indivi-
duals can be assigned to the three groups in the same
manner. The cells of Table 2 correspond to the counts of
affected and unaffected individuals in the three groups.
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Next, we demonstrate this tabulating procedure using a
toy. In our example, 13 individuals form two three-gen-
eration pedigrees (as illustrated in Figure 1). Individuals
1, 6, 7, 10, 12, and 13 are affected; individuals 2, 3, 4, 5, 8,
9, and 11 are unaffected. Among the affected individuals,
individuals 6 and 7 form a pair (6, 7) with two IBD
alleles. We assign them to group 1, and the cell count
nBB1 of cell (1,1) is 2. Individuals who form pairs IBD at
exact one allele include individuals 1, 6, 7, and 12.
Because individuals 6 and 7 have already been assigned
to group 1, only individuals 1 and 12 are assigned to
group 2. Note that, individuals 10 and 13 form a pair (10,
13) at S8 (see Table 1). Because they share exactly one
copy of IBD allele B with probability 0.5, they are
assigned to group 2 with probability 0.5. Therefore the
cell count nB1 of cell (1,2) is 2 + 0.5(2) = 3, and the cell
count n0 of cell (1,3) is 0.5(2) = 1. Similarly, among the
unaffected individuals, none of them form pairs with two
IBD alleles; individuals 2 and 8 form a pair (2, 8), which
has one IBD allele; and the rest of the unaffected

individuals, individuals 3, 4, 5, 9 and 11, form pairs with
zero IBD alleles. Hence the cell counts nBB0, nB0, and n0

of cell (2,1), cell (2,2), and cell (2,3) are 0, 2, and 5,
respectively.
Using Table 2, we formulated our IBD test as a chi-

square test, and the test statistic is:
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Under the null hypothesis H0, the expected cell fre-
quencies of the affected individuals should be the same
as the expected cell frequencies of the unaffected indivi-
duals, and the test statistic X IBD

2 has an asymptotic chi-
squared distribution with two degrees of freedom.
One great advantage of this IBD-based method is that

we can apply it not only to the common variants but also
to the rare variants. However, when the MAF (the fre-
quency of the B allele) is small, we may observe extre-
mely low cell counts for nBB1 and nBB0. Under such
circumstances, X IBD

2 no longer follows a chi-square dis-
tribution, and it is more appropriate for us to evaluate
the significance of the association through permutation
testing. We propose to obtain the empirical p-values by
shuffling the affected statuses of samples within each
family. And as a by-product, possible biases caused by
different family sizes or family structures will also be cor-
rected. In our toy example, the chi-square test p-value
(see Table 3 for the observed and expected cell counts)
was 0.089, and the resulting empirical p-value after 5,000
rounds of permutations was 0.413.

Results
We first compared the performances of two different
family-based approaches (association analysis and IBD
analysis) in terms of detection power and false discovery
rate using the 200 simulated extended family data sets in
GAW17. We then carried out standard stratified associa-
tion analyses with the population-based data sets so that
we could further investigate the application and the value
of using family-based approaches. In particular, we were

Table 1 IBD configurations for pairs of individuals

State Description

S1 BB/BB; IBD = 1

S2 BB/BB; IBD = 0.5

S3 BB/BB; IBD = 0

S4 BB/AB; IBD = 0.5

S5 BB/AB; IBD = 0

S6 BB/AA; IBD = 0

S7 AB/AB; IBD = 1

S8 AB/AB; IBD = 0.5

S9 AB/AB; IBD = 0

S10 AB/AA; IBD = 0.5

S11 AB/AA; IBD = 0

S12 AA/AA; IBD = 1

S13 AA/AA; IBD = 0.5

S14 AA/AA; IBD = 0

Consider a SNP marker with two alleles, A and B. Between two individuals, if
both alleles are identical by descent (IBD), then the IBD score is 1; if one allele
is IBD, then the IBD score is 0.5; and if no allele is IBD, the IBD score is 0. For
an arbitrary pair of samples within the same family k, there are 14
combinations of their IBD scores and genotypes, shown here as S1 to S14.

Table 2 Contingency table

Group Number of distinct individuals who form
pairs IBD at B|B

Number of distinct individuals who form
pairs IBD at B|− but not B|B

Other

Case Observed nBB1 nB1 n1

Expected pcase(nBB
1 + nBB0) pcase(nB

1 + nB0) pcase(n
1 + n0 )

Control Observed nBB0 nB0 n0

Expected pcontrol(nBB
1 +nBB0) pcontrol(nB

1 + nB0) pcontrol(n
1 + n0 )

We tabulate affected individuals and unaffected individuals using a 2 × 3 contingency table. Using this table, we formulate our IBD test as a chi-square test.
Under the alternative hypothesis, affected samples tend to form more pairs that are IBD at B|B or B|−. In other words, distinct affected individuals have a greater
chance of forming pairs IBD at B|B or B|−. Throughout the table, nBB1/ nBB0 denotes the number of distinct affected/unaffected individuals who form pairs IBD at
B|B; nB1/nB0 denotes the number of distinct affected/unaffected individuals who form pairs IBD at B|-, but not B|B; n1/n0 denotes the number of the rest of the
affected/unaffected individuals.
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keen to find out whether family-based approaches have
certain advantages in discovering rare causal variants.

Family-based association analysis
The association analyses were performed by fitting the
logistic regression using the GEE on all common SNPs
(MAF > 0.01) and combining rare SNPs. Within each
gene, we first made corrections for the false discovery
rate (FDR) [8]; then we selected the minimum p-value to
present the gene-level p-values. In this way, we were able

to make fair comparisons across genes with different
sizes. We calculated the correlations of these FDR-cor-
rected [8] gene-level p-values for all possible pairs out of
200 rounds of simulations, and the average correlation of
these across all 200 rounds of simulations was 0.965,
which suggested that the results given by the association
analyses were fairly stable. We noticed that the associa-
tion tests were still inflated with some false positives, as
shown in the Q-Q plots (Figure 2b). The estimated infla-
tion factors ranged from 1.02 to 1.36.

Figure 1 Receiver operating characteristic curves. Plot of the true-positive rate against the false-positive rate for the different possible cutpoints
of a diagnostic test. These ROC curves are for the two family-based approaches and the population-based association analysis that we performed
using GAW17 family-based data sets and population-based data sets. The shape of each curve indicates the quality of the corresponding method.
The closer a ROC curve is to the diagonal of the plot, the worse the corresponding method is. A hypothetical perfect method would have a ROC
curve that is a constant function with true-positive value 1 and false-positive value 0. The two family-based approaches (the logistic regression
using GEE and the IBD analysis) performed significantly better than the standard population-based association study.
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We also evaluated false-positive rates. We declared the
significance of the gene-level p-values with an arbitrary
cutoff value a. Genes with p-values less than 0.05 were
considered detected in each simulation. Averaging over
200 replicates, the chance of wrongly declaring noncau-
sal genes (over all 3,205 genes) was 0.096 and 0.033 at
an a level of 0.05 and 0.01, respectively.
We further evaluated the power of detecting true func-

tional genes at an a level of 0.05 and 0.01, respectively.
Among all 3,205 genes, the family-based association study
successfully identified gene VEGFA as the most significant
gene with a power as high as 81% at a = 0.05. Four other
causal genes with the highest discovery rates were LPL,
VNN1, SHC1, and SIRT1. Compared to the other 31 cau-
sal genes, these 5 genes have both strong effects and rela-
tively high frequencies of carrying risk variants.

IBD analysis
The proposed IBD test was performed on all common and
rare SNPs. Raw p-values of all SNPs were the empirical p-
values based on 10,000 permutations. Within each gene,
the FDR-corrected minimum p-values were used to pre-
sent the gene-level significance. As shown in Figure 3, the
sensitivity of the IBD analysis approach was comparable to
the association analysis approach. However, the results
from the proposed IBD test were not as stable as the
results from the association analyses; the average correla-
tion of the FDR-corrected gene-level p-values across all
200 rounds of simulations was 0.461. As shown in the Q-
Q plot in Figure 3c, the IBD analyses were inflated with a
certain amount of false positives in most of the replicates,
and in other replicates our IBD tests were underpowered.
The estimated inflation factors of the IBD tests ranged

Table 3 Contingency table of the toy example

Group Number of distinct individuals who form
pairs IBD at B|B

Number of distinct individuals who form
pairs IBD at B|− but not B|B

Other

Case Observed 2 3 1

Expected (6/13)(2 + 0) = 12/13 (6/13)(3 + 2) = 30/13 (6/13)(1 + 5) = 36/13

Control Observed 0 2 5

Expected (7/13)(2 + 0) = 14/13 (7/13)(3 + 2) = 35/13 (7/13)(1 + 5) = 42/13

Figure 2 Pedigrees of two hypothetical three-generation extended families
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from 0.86 to 1.41, and the actual false-positive rates at a =
0.05 and a = 0.01 were 0.112 and 0.039, respectively. The
five causal genes with the highest discovery rates were
VEGFC, SHC1, VEGFA, HIF3A, and SIRT1. At a signifi-
cance level of 0.05, our IBD test successfully picked up
genes VEGFC and SHC1 with a power of 82% and 67%,
respectively, which ranked them first and fifteenth out of
all 3,205 genotyped genes.

Comparing family-based approaches with the population-
based association analysis
As a comparison to the family-based analyses, we also
performed a standard stratified analysis on the 200 simu-
lated population case-control data sets. We assessed the
power of population-based studies for all causal genes
based on the outputs from the PLINK computer pro-
gram. FLT1, which has three common variants and large
genetic effects, is the only gene with a detection power
greater than 50%. For most other causal genes with rare
variants, family-based studies had better power of detec-
tion than population-based studies. The Q-Q plot in
Figure 3a shows that the standard stratified analyses were
also inflated with some false positives. The estimated
inflation factors ranged from 1.02 to 1.37, and the actual
false-positive rates at a = 0.05 and a = 0.01 were 0.089
and 0.029, respectively. Although all three types of ana-
lyses have comparable false-positive rates, the receiver
operating characteristic (ROC) curves (Figure 1) show
that the two family-based analyses clearly performed sig-
nificantly better than the standard population-based
association study in terms of having higher sensitivity.

Conclusions
In this work, our analyses provide new insights into the
genetic studies of family data with large extended

pedigrees for dichotomous traits. We tested the utility of
two types of family-based approaches: a logistic regression
fitted using GEE and our proposed IBD test. The logistic
regression with GEE was used to test the associations in
large pedigrees while simultaneously controlling for envir-
onmental covariates. To properly handle the rare variants,
we provide an operable and straightforward scheme to col-
lapse the rare variants within a gene. This simple collap-
sing strategy was shown to be useful. As an example, we
had a reasonable power for identifying causal gene SIRT1,
which is enriched with rare causal variants. We also
showed that the linkage of disease alleles can be tested
based on IBD scores in extended pedigrees. By incorporat-
ing information from not only parents and siblings but
also other ancestors, we developed a chi-square test based
on a 2 × 3 contingency table. Our IBD test provides an
attractive alternative to the conventional tests because it is
computationally fast and does not require one to specify
an inheritance model explicitly.
We compared the performance of family-based studies

using these two approaches with the performance of the
population-based studies using the standard stratified ana-
lysis. Population-based studies seemed to have better power
for detecting common variants, and the family-based stu-
dies seemed to have better power for detecting rare var-
iants. If a risk allele is present in early founders and the
effects of risk alleles are relatively large, the IBD analyses
clearly outperformed the family-based association analyses.
We noticed that, even for rare variants that have extremely
low frequencies or that are found in only a few families, the
IBD analysis has a good chance of picking up them. For
example, in this work, the power of detecting risk genes
VEGFC and HIF3A using the IBD tests was significantly
higher than the power obtained using the logistic regres-
sions. In other instances, family-based association analyses

Figure 3 Q-Q plots of three analyses using population data sets and family data sets. The panels display Q-Q plots of FDR-corrected gene-
level p-values from all 200 replicates. Green dots are based on replicate 5. (a) Population-based case-control association studies, using the stratified
analysis. (b) Family-based association analyses obtained by fitting logistic regression using the GEE. (c) Family-based IBD analyses, in which raw p-
values of all rare and common variants are empirical p-values. These empirical p-values are based on 10,000 rounds of permutations.
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had better power to detect genes that have relatively high
frequencies of risk alleles and relatively large genetic effects.
In the worst scenario, if the risk allele was extremely rare,
not present in early founders, and of small genetic effect,
both methods failed. Because the two family-based
approaches have their own advantages for dealing with rare
variants, these two approaches can potentially compensate
each other. Combining these two types of analysis may be a
more powerful solution in the search for causal variants.
Although hunting for rare causal variants using family

data sets seems promising, many practical issues need to
be addressed before the effectiveness of family-based ana-
lyses can be fully recognized. For example, the IBD test
can produce unstable results, and it is not very straight-
forward to obtain the gene-level IBD scores in the first
place. Also, we noticed that all analyses were inflated
with some false positives. We suspect that the inflated
false positives may be caused by those nonfunctional var-
iants whose genotypes are highly correlated with the
functional variants. Luedtke et al. [9] offers a detailed dis-
cussion of these so-called spurious associated genes.
Other possible sources of inflated false positives in practi-
cal studies include insufficient correction of population
stratification, inappropriate handling of rare variants, and
the effects of linkage disequilibrium structures. We will
further investigate the influence of these possible sources
in our future studies.
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