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Abstract

Both family- and population-based samples are used to identify genetic variants associated with phenotypes. Each
strategy has demonstrated advantages, but their ability to identify rare variants and genes containing rare variants
is unclear. To compare these two study designs in the identification of rare causal variants, we applied various
methods to the population- and family-based data simulated by the Genetic Analysis Workshop 17 with
knowledge of the simulated model. Our results suggest that different variants can be identified by different study
designs. Family-based and population-based study designs can be complementary in the identification of rare
causal variants and should be considered in future studies.

Background
Missing heritability is a major challenge in the discovery of
genetic variants responsible for complex disease [1]. One
possible reason for the missing heritability is that the cur-
rent genome approaches focus on common rather than
rare variation [2]. However, it is increasingly recognized
that rare variants may be responsible for complex disease
etiology [3,4]. Thus the next generation of gene discovery
should focus on identification of rare variants.
Both family-based and population-based samples have

been used to identify variants associated with phenotypes.
In recent years, population-based association studies have
gained favor because increased power may be obtained
[5,6]. On the other hand, family-based approaches, such as
linkage, are optimally positioned to identify rare variants
with large effects [7,8]. Because each type of design has
strengths and limitations, studies have been conducted
using both designs simultaneously. Successes have been
reported for common variants, in which the same variants
were detected by both designs [9,10]. However, inconsis-
tency was also observed [11,12].
It is not clear how family- and population-based analyses

behave on rare variants. By applying various methods to

the population- and family-based data simulated by
Genetic Analysis Workshop 17 (GAW17), we compared
the power of different designs in the identification of rare
(minor allele frequency [MAF] < 0.01) causal variants.

Methods
Two data sets were analyzed [13]. One consists of 697
unrelated individuals; the other consists of 697 indivi-
duals from 8 extended families. Simulated Q1 pheno-
types were used. Analyses were adjusted for age, sex,
smoking status, and population stratification using prin-
cipal components analysis.

Gene-level analysis
We analyzed the family-based data with a two-point link-
age analysis using Sequential Oligogenic Linkage Analysis
Routines (SOLAR) 4.10, with identity-by-descent (IBD)
matrices from fully informative markers provided by
GAW17.
For the population-based data, we collapsed single-

nucleotide polymorphism (SNP) information on each of
the nine Q1 related genes using three methods. The first
method was indicator coding, in which genetic informa-
tion of a particular gene was dichotomized according to
the presence or absence of at least one rare nonsynon-
ymous variant. The second method was percent coding,
in which genetic information of a particular gene was
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calculated as Si = ri/ni, where ni denotes the number of
rare variants successfully genotyped for subject i and ri
denotes the number of these variants that carry at least
one copy of the minor allele. The third method was
weighted-sum collapsing. This method assumes an addi-
tive allelic effect by recoding the genotypes into 0, 1, or 2
based on the copy number of the minor allele. Then the
single-SNP effect for each of the rare nonsynonymous
SNPs was examined using univariate regression. For
SNPs with significant (a ≤ 0.1) negative effect, the geno-
types were converted to 2, 1, and 0 from 0, 1, and 2,
respectively. The genetic information of one particular
gene was then summarized as the sum of the numeric
genotypes of all rare nonsynonymous SNPs on the gene.
The gene-Q1 association was then tested using linear
regression.

SNP-level analysis
In the population-based data, single-SNP association with
Q1 was tested using linear regression. In the family-based
data, single-SNP association was assessed using a mea-
sured genotype approach that compared polygenic models
with or without each of the SNPs as a covariate [14]. The
quantitative transmission disequilibrium test (QTDT) was
performed using JMP Genomics 4.
Analyses were performed with knowledge of the simu-

lated model.

Results
Gene-level analysis
In the family-based data, linkage (LOD ≥ 1) to Q1 pheno-
type was detected in all Q1-related genes, suggestive link-
age (LOD ≥ 2) was detected in five genes, and strong
linkage (LOD ≥ 3) was detected in only the VEGFA and
VEGFC genes (Table 1).
For the 200 simulated population-based data, genes

FLT1 and KDR showed high power in all three SNP

collapsing methods, followed by the VEGFC and VEGFA
genes. Power to detect the ARNT, ELAVL4, HIF1A,
FLT4, and HIF3A genes was low (Table 2).

SNP-level analysis
We tested single-SNP association for the 39 causal SNPs
in both the population-based and the family-based data.
The highest power was observed for markers C13S522
and C13S523 in the population-based data and for mar-
kers C6S2981 and C4S4935 in the family-based data
(Additional file 1). Although C6S2981 and C4S4935 are
rare in the population, they are enriched in families. For
SNPs with similar MAFs in both the population-based
and the family-based data (C1S3181, C13S431, C4S1861,
C4S1878, and C4S1884), our results showed similar
power of identification.
Using the QTDT on family-based data, we also tested

SNP association for SNPs on chromosomes 1, 4, 6, and
13. The QTDT showed overall lower power than the
measured genotype approach (Additional file 1).
Because single-SNP association and the QTDT are two

commonly used analysis methods for population- and
family-based data, respectively, we compared the power
of SNP identification of these two methods. Among the
32 rare causal SNPs in the population-based data, 3 were
identified with greater than 50% power. Among the 11
rare causal SNPs that showed polymorphism in the
family-based data, no true causal SNP was identified with
greater than 50% power. In both analyses, high power
was observed in common SNPs.

Discussion and conclusions
Using data simulated by GAW17, in the current study
we compared population-based and family-based designs
for their ability to identify rare causal variants, as well as
gene-level association. We found that the population-
based and family-based designs can result in the

Table 1 Two-point linkage analysis using family-based data

Gene SNP with highest b SNP with highest MAF Number of simulation

SNP b SNP MAF LOD ≥ 1 (a = 10−2) LOD ≥ 2 (a = 10−3) LOD ≥ 3 (a = 10−4) LOD ≥ 4 (a = 10−5)

ARNT C1S6561 0.65721 C1S6533 0.011478 1 0 0 0

ELAVL4 C1S3181 0.76911 C1S3181 0.000717 3 0 0 0

C1S3182 0.000717

FLT1 C13S479 0.75946 C13S523 0.066714 4 0 0 0

FLT4 C5S5156 0.43010 C5S5133 0.001435 10 1 0 0

HIF1A C14S1729 0.28532 C14S1734 0.012195 1 0 0 0

HIF3A C19S4831 0.29287 C19S4799 0.000717 43 3 0 0

C19S4815 0.000717

C19S4831 0.000717

KDR C4S1877 1.07706 C4S1878 0.164993 48 9 0 0

VEGFA C6S2981 1.20645 C6S2981 0.002152 198 172 110 55

VEGFC C4S4935 1.35726 C4S4935 0.000717 197 167 126 76

a values associated with LOD scores are calculated as described by Ott [15].
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identification of different causal variants and genes.
Because the same underlying simulated model was used
for both the family- and population-based data sets,
these results suggest that both of these designs have
roles in the discovery of rare variant association.
By comparing the identified and unidentified causal

genes (Tables 1 and 2), we found several interesting
characteristics. Both population- and family-based analy-
sis identified particular genes most of the time (KDR
and FLT1 by population-based data; VEGFA and
VEGFC by family-based data). In the family-based data,
both KDR and FLT1 have five polymorphic causal var-
iants, whereas VEGFA and VEGFC included only a sin-
gle causal variant each. Based on the expected
performance of linkage, one might expect linkage to
work better in genes with multiple variants. However,
VEGFA and VEGFC show larger effects (b = 1.21 and
1.36, respectively); thus the ability to detect the VEGF
gene may be more reflective of the effect than of the
number of variants. On the other hand, the methods we
used to identify gene-Q1 association in the population-
based data rely largely on the probability to capture rare
variants; thus a higher power for genes with more rare
variants (KDR and FLT1) is not surprising.
When comparing SNP association and the measured

genotype approach, we found that power is related to
MAF (Additional file 1). When MAF is similar, these two
methods show no difference. On the other hand, these
two data sets identify different SNPs. Because similar
approaches are used, this difference is likely due to the
design. The results suggest that for SNPs that are rare in
a population, a family-based design may provide an
opportunity to enrich the rare SNPs, thus increasing the
power to detect the SNP-phenotype association (e.g.,
C6S2981 and C4S4935). However, a family-based sample
may lack polymorphism by chance. In this case, popula-
tion sampling may be advantageous (e.g., C4S1877 and
C4S1889).

When comparing linkage and association results from
the family-based data (Table 1 and Additional file 1), we
noticed that FLT4 and HIF3A were identified by linkage,
but the causal SNPs on these two genes were either
nonpolymorphic or had no power to be identified even
at the 0.01 level in the association test. Thus, when ana-
lyzing family-based data, linkage analysis may be advan-
tageous in the identification of causal regions by using
other genetic variations in the same region.
We also compared the association results at the SNP

and gene levels from the population-based data (Table 2
and Additional file 1). It appears that gene-level associa-
tion is not likely to be detected when SNP-level associa-
tion is lacking. Collapsing the information of the rare
SNPs on one particular gene may not enhance the
power or provide additional information, as linkage ana-
lysis would.
Taken together, these results suggest that neither the

family-based nor the population-based analysis we used
is sufficient to identify causal variants of next-generation
sequence-level data, especially in the context of rare var-
iants. Given that the family-based design offers a variety
of advantages (such as segregation with disease rather
than just co-occurrence) that cannot be used for unre-
lated individuals and that may enrich rare variants, the
family-based design may also be valuable for genome-
wide SNP scanning for novel causal variants. Population-
and family-based designs can be complementary and
should both be considered in future genome-wide asso-
ciation studies.

Additional material

Additional file 1: Power of the association test in population and
family-based data Power% is the number of replicates detected divided
by the number of replicates analyzed multiplied by 100. The QTDT was
performed with 100 replicates; other analyses were performed with 200
replicates. No result was generated by the QTDT for C1S3181 and
C4S1890. SNPs with MAF > 0.01 are shaded. na, not applicable.

Table 2 Gene-phenotype association analysis using population-based data

Gene Number of SNPs Number of causal SNPs Causal/total SNPs (%) Number of simulations with
gene detected at a = 0.01

Number of simulations with
gene detected at a = 0.0001

Binary Percent Sum test Binary Percent Sum test

ARNT 8 4 50 2 2 3 0 0 0

ELAVL4 3 2 67 2 2 2 0 0 0

FLT1 17 8 47 111 111 115 19 19 23

FLT4 5 2 40 0 0 5 0 0 0

HIF1A 5 3 60 3 3 2 0 0 0

HIF3A 6 3 50 0 0 1 0 0 0

KDR 9 8 89 98 162 151 17 52 55

VEGFA 2 1 50 16 16 20 1 1 1

VEGFC 1 1 100 86 86 86 11 11 11

Only rare (MAF < 0.01) nonsynonymous SNPs were used in the analyses.
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