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Abstract

We propose a factor-screening method based on a Bayesian model selection framework and apply it to Genetic
Analysis Workshop 17 simulated data with unrelated individuals to identify genes and SNP variants associated with
the quantitative trait Q1. A Metropolis-Hasting algorithm is implemented to generate a posterior distribution in a
restricted model space and thus the marginal posterior distribution of each variant. Our framework provides
flexibility to make inferences on either individual variants or genes. We obtained results for 10 simulated data sets.
Our methods are able to identify FTPT and KDR, two genes that are associated with Q1 in a majority of replicates.

Background
Yoon [1] proposed a Bayesian framework for factor
screening, based on Bayesian model selection. In sum-
mary, given a total of p candidate factors, we evaluate a
model space of K models. Each model involves m factors
(usually m is much smaller than p for the Pareto principle
of factor scarcity and is specified by the user), is of the
same class, and is assigned a prior probability p(My). The
prior probabilities are usually the same if the models have
the same number of parameters. Note that a model M,
corresponds to a binary vector ¥ = (1, Y2, ..., %), Where
? 4, =m. Given observed data y, the posterior probabil-

ey i=1 .
ities are given by:

p(Mk | y) — Kp(y | Mk)p(Mk) ,

D oy | Mi)p(My)

(1)

in which p(y | My) is obtained by integrating out the
unknown parameters. To evaluate the importance of
each factor, we can summarize its marginal posterior
probability by:
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Here, we apply this method to the Genetic Analysis
Workshop 17 (GAW17) simulated data, of which the gen-
otypes of 697 individuals at 3,205 genes are based on
exome sequencing data of the 1000 Genomes Project [2].
In principle, the general framework described applies to
any class of parametric or nonparametric models, so long
as the model posterior probability is well defined and can
be computed. However, here we consider only linear mod-
els, and we apply our method to analyze quantitative trait
Q1 of the GAW17 data set. This trait was simulated to be
associated with 39 single-nucleotide polymorphisms
(SNPs) in 9 genes. In the first part of our analysis, we treat
each SNP as a factor to evaluate the association at the
SNP level. In the second part of our analysis, we treat each
gene as a factor and evaluate the association at the gene
level. Because each gene contains a different number of
SNPs, unequal prior probabilities are assigned to candidate
models to penalize models with more parameters based on
the Bayesian information criterion (BIC) [3].

Methods

Use SNPs as factors

Consider a linear model with quantitative responses y =
XPB + &, where y is a quantitative trait and X is a matrix
derived from genotypes from m SNP variants, with
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details to be given later, and & ~ N(0, 6°I). The prior
distribution of 8 and ¢” is given as 8 | 6° ~ N (0, ¢*
(A’%)) and p(0”) « 1/6%, where A is a tuning parameter
that controls the flatness of the prior distribution and X
can be specified to reflect the relation between the can-
didate variables. In this notation, we omit the subscript
vector ¥ that represents each model M in the model
space. Under these prior distributions, the posterior dis-
tribution of y can be easily computed by integrating out

B and o>

-n/2

o 1) o[ =52 [ (1= 225,27 )y | e, (3)

where s= ),zX;,XyZy + 1. Brown and Vannuci [4]
developed a method that further improves the computa-
tional efficiency of the posterior distribution, because it
can be written as:

-1

] P P
o )< | X%, [yy—yXV(X,Xy) X,Y] pr), (4
where:
5 12
sz[/lxylz/1 ]r (5)

- (v
y—(o} (6)

U -1

Note that §5 — y’f{y (X’Zf(y ) ) f(’y y is the sum residual
squared when we regress y on’ X, ; it can be computed as
77 - ?'QyQ'yf/, and the other part of the posterior distri-
bution can be computed as ‘X;Xy ‘ = ‘ u,|, where

X , =Q,U, is the QR decomposition of X » - The details

of using QR decomposition for least-squares estimates of
linear models are given by Seber [5].

However, even with efficient evaluation of the model
posterior distribution, the model space contains p choose
m models and is usually too big to be exhaustively evalu-
ated. For example, with p = 24,478 variants, there are
almost 2.5 trillion models when m = 3. If 1 million models
are evaluated in a second, it will take almost a month to
evaluate all 2.5 trillion models. Therefore a Monte Carlo
Markov chain (MCMC) method is used to obtain the pos-
terior probability. We used a simple Metropolis-Hasting
algorithm, which we briefly described in what follows. Let
7’ be the model at the jth step. At the (j + 1)th step, a
model y* is randomly selected by replacing a random
active factor (i.e., ¥ = 1) in Y’ with a random inactive
factor (i.e., ¥ = 0) in ). Set /*1) = y* with probability
min{p(y* | y) / p(” | y),1}; otherwise, set /*1) = ¥, To
estimate the marginal posterior distribution of each factor,
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we simply count the number of times the factor appears
in the chain. To determine if the MCMCs have reached
convergence, we usually compare two chains run with dif-
ferent seeds given to the pseudo-random number
generator.

Given a vector of active factors (genotypes variants)
each column of X is the number of minor alleles of
each (active) variant in the 697 subjects, centralized to
mean 0. Note that all models with a fixed number of
active factors have the same number of parameters. This
avoids the complication of comparing models with dif-
ferent numbers of unknown parameters; thus all candi-
date models have the same prior distribution. Our
framework can consider factor-factor interactions by
including interaction terms in the model matrix X, but
we do not include them here.

The effects of the three covariates, Smoke, Age, and Sex,
are removed by taking a regression of the quantitative
traits to the covariates. The residuals are then used as the
quantitative response to be associated with genetic var-
iants. Because Q1 is simulated with interaction effects
between variants in the KDR gene and smoking, by ignor-
ing such interactions, our power for detecting the KDR
gene would be lower.

Use genes as factors

Using SNP variants as factors does not take into consid-
eration genes on which variants are sitting. Statistical
inference on a gene can be made indirectly by averaging
the marginal posterior distribution of all variants within
it. Alternatively, we can treat each gene as a factor in our
factor screen framework by forcing all variants in a gene
in and out of a linear regression model together. The
inferences are then made directly on each gene, but no
inference is made on individual SNPs.

More specifically, in the linear model y = Xf3 + ¢, X is a
matrix derived from genotypes of all SNP variants of m
“active” genes. The number of columns of X is the total
number of SNP variants of the m genes. A binary vector y
= (%1 Y2 .--» 7p) NOW represents the active or inactive state
of the 3,205 genes, but the computation of the posterior
distribution follows the same formula as above. However,
each gene has a different number of SNP variants; hence
the column of X varies even though the number of active
genes is fixed. Therefore the total number of parameters of
each candidate model is not fixed. If we still assign each
candidate model with equal prior probability, the model
selection procedure tends to bias toward genes with a
greater number of variants. In an effort to correct for such
bias, we assign prior probabilities of candidate models
based on the BIC. That is, the prior probability of a model
is proportional to e™*'2, where k is the total number of
parameters.
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Results

Running a MCMC procedure is computationally expen-
sive. Therefore we run our analysis on only the first 10
replicates of the 200 replicates simulated by the GAW17
data set. However, we believe that the results of these
10 replicates are sufficient to evaluate our method.

Use SNP as factors

We analyzed Q1 with m = 10. That is, our model space
contains all models with 10 active SNP variants. In the
prior distribution of 8, we set A = 1 as the effects of the
Ql-associated variants in the simulation range from 0.13
to 1.35. We also set 2 as an identity matrix to reflect no
prior information on how effects of those variants are
associated. We ran a MCMC of length 100,000 (after a
burn-in run of 1,000) on each replicate and computed the
marginal posterior probabilities. To check whether the
length of the MCMC was good enough, we ran another
independent MCMC of length 100,000 on the first repli-
cate. The marginal posterior probabilities estimated from
the two chains were highly correlated, suggesting conver-
gence at such a length. The marginal posterior probability
of the first three replicates is illustrated in Figure 1. The
red dots represent SNPs associated with Q1. From Figure
1, one can see that several Q1l-associated SNPs consis-
tently have high posterior probabilities, but most have low
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posterior probabilities and are not detected. In addition, in
each replicate, some SNPs that are not associated with Q1
also have high posterior probabilities, which could lead to
false positives, but such false positives are largely not
repeated in the replicates.

The purpose of factor screening is to select a set of fac-
tors for further investigations. Therefore a certain level of
false positives can be tolerated. There are in general two
ways to make a cutoff. One is to take a certain number of
factors from the analysis; the other is to take factors with
a certain level of marginal posterior probability. Table 1
shows the list of variants that ever appeared among the
top 20 SNPs in 10 replicates and the number of times
they appeared. Four SNPs that appeared most frequently
were all Q1 SNPs. They are C13S523, C13S522, and
C13S524 of FLTI and C4S1884 of KDR. Ten variants
appeared twice in 10 replicates, among which only two
are Q1 associated. One hundred fifty-three variants
appeared only once, among which only three are Q1
associated. Out of the top 20, we have on average 3.3 Q1
variants per replicate. Overall, 30 of 39 Q1l-associated
variants never appeared in the top 20 in any of the 10
replicates. However, among the seven Q1 variants with a
minor allele frequency (MAF) greater than 0.01, only one
(C14S1734 of HIFIA) with an MAF of 0.012195 was
never detected in 10 replicates. Among nine Q1 variants
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Figure 1 Marginal posterior probability of SNP variants The marginal posterior probability of 24,487 variants obtained for the first three

replicates are displayed. Red dots mark the Q1-associated variants.
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Table 1 SNPs with high marginal posterior probabilities
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Appearances in top 20 SNPs among 10 replicates

SNPs (genes), m=10

— N AN U1 0 O

C13S523 (FLTT)
C13S522 (FLTT)
C135431 (FLTT)
C451884 (KDR)

(C451878 (KDR), C652981 (VEGFA), 8 SNPs not associated with Q1
C13S524 (FLTT), C156533 (ARNT), C451890 (KDR), 151 SNPs not associated with Q1

The SNP variants that have posterior probabilities in the top 20, including both Q1-associated SNPs and false positives, are listed. The symbols of Q1-associated
variants are given and those not associated with Q1 are omitted. The first column shows the frequency of a variant in the top 20 among 10 replicates.

that appeared in the top 20, C6522981 (VEGFA) has the
least MAF, 0.002152, corresponding to three alleles
among the 697 subjects. Table 2 lists seven Q1 SNP
variants with marginal posterior probabilities larger than
0.1 in any of the 10 replicates, all of which are also listed
in Table 1. There are only 3 occurrences of non-Q1
SNPs with a posterior probability greater than 0.5 and 36
occurrences with a posterior probability greater than 0.1.
That is, only 0.3 and 3.6 per replicate.

From the results of the analysis at the SNP level, it is
also possible to make inferences about the genes by
computing the average marginal posterior probability
per SNP for the genes. Table 3 shows the ratio between
this average marginal posterior probability of the nine
Q1l-associated genes to the prior probability (which
equals 10/24,487). Six out of nine genes had a posterior
probability greater than the prior probability, with FLT1
and KDR on average 113 times and 50 times greater,
respectively.

Use genes as factors

For the first 10 replicates, we analyze Q1 with m = 3 and
m = 6. We run 10,000 iterations of MCMCs after a burn-
in period of 1,000. A comparison between the two inde-
pendent chains for the first replicate suggests that the
marginal posterior probabilities of the individual factors
converge at such length. For the prior probability of 3,

Table 2 SNPs with high marginal posterior probabilities

we set A = 1, as previously, and set 2 as an identity
matrix. We also run our analysis with a X' that imposes a
slight correlation (at 0.1) among the effects of variants
within a gene. The results are similar and hence are not
presented here.

Similar to Table 1, Table 4 lists the genes that ranked
in the top 10 marginal posterior probabilities in any of
the 10 replicates. We can see that the results at m = 3
and m = 6 are similar. In fact, FLTI always had the high-
est marginal posterior probability in all 10 replicates. At
m = 3, KDR appeared five times and HIFIA and ARNT
appeared once. Eighty-one genes not associated with Q1
also appeared, with 79 appearing only once and 2 twice.
At m = 6, KDR appeared six times, and HIFIA and
VEGFA appeared once. Seventy-eight genes not asso-
ciated with Q1 also appeared, with 74 appearing once
and 4 twice. To see whether or not our BIC-based adjust-
ment of the prior probability was fair, we compared the
number of SNPs of those 78 genes with the other 3,118
genes that are not Q1 associated. The number of SNPs
per gene is much lower among the 78 genes (3.45) than
among the rest of the genes not associated with Q1
(7.73). This suggests that our prior probability assign-
ment overcorrects and favors genes that have fewer var-
iants. One reason for this could be high correlation
between the variants and singularity of some model
matrices, making the effective number of parameters less

SNP Gene Posterior probability > 0.5 Posterior probability > 0.1
C135431 FLTT 1 4
C135522 FLTI 6 8
C135523 FLTT 9 9
C135534 FLTT 0 1
451878 KDR 0 2
451884 KDR 2 4
652981 VEGFA 0 1
Other Q1 0 0
Non-Q1 3 36

False-positive discovery rate 3/21 36/65

The first column lists Q1-associated SNP variants that have marginal posterior probabilities larger that 0.1 in any of the 10 replicates. The second column gives
the genes on which these variants sit. The third and fourth columns are frequency of their posterior probabilities larger than 0.1 and 0.5, respectively; they
summarize all variants not associated with Q1 but with a posterior probability greater than 0.1 or 0.5. The false discovery rates are given in the last row.
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Table 3 Average marginal posterior/prior probability
ratio per variants for Q1-associated genes

Gene Posterior/prior ratio
(mean of 10 replicates)
ARBT 1.79
ELAVL4 131
FLTT 13
FLT4 0.649
HIFTA 0.970
HITF3A 0483
KDR 50.5
VEGFA 11.6
VEGFC 2.50

For each of the Q1-associated genes, the average marginal posterior
probability over all its SNP variants is computed and divided by the average
marginal prior probability 10/24,487. The second column lists such ratios
averaged over 10 replicates. A higher ratio indicates more importance of the
gene.

than the number of variants in the model. Better prior
probability assignment will be further investigated.

Table 5 shows the marginal posterior probabilities of
the nine Q1l-associated genes averaged over 10 replicates
and the number of times they are greater than 0.5 and
0.1. The marginal posterior probability for FLT1 is
almost 1 in every replicate. KDR has an average poster-
ior probability greater than 0.32 when m = 3 and about
0.4 when m = 6. VEGFA is the only other gene that
ever has a marginal posterior probability greater than
0.1, which occurs once in 10 replicates. But the number
of false positives is also low. At m = 3, the false-positive
discovery rate is 5/19 and 18/32 at the 0.5 and 0.1 cut-
offs, respectively. At m = 6, higher false-positive discov-
ery rates are observed at 7/20 and 51/68. We also
observe that the posterior probability of ARBT is some-
what higher at m = 3 than at m = 6. This could be
explained by ARBT having a large number of variants
(18 SNPs), and our procedure penalizes genes with
many variants more harshly at m = 6 than at m = 3. For
the same reason, VEGFA (6 SNPs) and VEGFC (1 SNP)
fair better at m = 3 than at m = 6.

Table 4 Genes with high marginal posterior probabilities
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Conclusions

We presented a simple method of Bayesian factor
screening and applied it to analyze Q1, a quantitative
trait simulated to be associated with 39 SNP variants in
9 genes. We applied two implementations: One treats
each SNP as a factor; the other treats each gene as a
factor. Our computational framework is simple, straight-
forward, and efficient. The prior probabilities require
few assumptions and are as noninformative as possible.
Based on our experience, the results are not sensitive to
the choice of A and X in the prior probability and are
not sensitive to the choice of m when SNPs are treated
as factors. No biological information was used, except in
the second implementation, where we grouped the
SNPs of the same gene together.

Our method is quite effective. In the gene-level analysis,
when all SNPs in a gene are treated as a group, we are
able to identify FTL1 consistently as the top candidate and
we find KDR about half of the time. Beyond these two
genes, we are not able to identify other Q1 genes without
dramatically increasing our false-positive discovery rate.
Our prior probability assignment penalizes models with
more parameters and tends to overly favor genes with
fewer variants; it requires further adjustment. The false-
positive discovery rate tends to increase as m increases. In
the SNP-level analysis, we have a good chance of identify-
ing most Q1l-associated SNPs with MAF > 0.01, at a rea-
sonable false-positive discovery rate. The rarer variants are
difficult to identify, even allowing for a high false-positive
discovery rate. It might be unreasonable to expect variants
with a low MAF to be identified in a sample size of 697
and a low false-positive discovery rate when there are
almost 25,000 candidate variants, unless some degree of
biological knowledge is used. The inference on genes
derived from SNP-level analysis seems reasonable effec-
tive, finding FLTI and KDR frequently. When we take a
fixed number of top factors for further investigations, the
false discovery rate tends to be high. However, multistage
designs can be used to gradually weed out false positives
that pass the early rounds, because the chance for them to
luck out twice is very low.

Appearances in the top 10 genes among 10 m=3 m=6
replicates
10 FLTT FLTT
6 - KDR
5 KDR -
2 Two genes not associated with Q1 Four genes not associated with Q1
1

ARNT, HIF1A, 79 genes not associated with

HIF1A, VEGFA, 74 genes not associated with
Q1 Q1

The genes that have posterior probabilities in the top 10, including both Q1-associated genes and false positives, are listed. The symbols of Q1-associated genes
are given and those not associated with Q1 are omitted. The first column shows the frequency of a variant in the top 10 among 10 replicates. The second and
third columns show the results at m = 3 and m = 6, respectively, where m is the fixed number of factors entertained in a model of the model space.
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Table 5 Marginal posterior probability for Q1-associated genes

Gene Posterior probability Posterior probability > 0.5 Posterior probability > 0.1
(mean of 10 replicates)
m=3 m==6 m=3 m=6 m=3 m==6
ARBT 0.00521 0.00175 0 0 0 0
ELAVL4 0.00001 0.00065 0 0 0 0
FLTT 0.98967 0.96252 10 10 10 10
FLT4 0 0.00053 0 0 0 0
HIF1A 0.00596 0.00704 0 0 0 0
HIF3A 0 0 0 0 0 0
KDR 0.32353 040953 4 3 4 6
VEGFA 0.0006 0.0434 0 0 0 1
VEGFC 0.00129 0.00256 0 0 0 0
Non-Q1 5 7 18 51
False-positive discovery rate 5/19 7/20 18/32 51/68

Marginal posterior probabilities of nine Q1-associated genes averaged over 10 replicates are listed in the second and third columns. For each gene, the number
of times that its posterior probability is greater than 0.5 is listed in columns 4 and 5, and the number of times that it is greater than 0.1 is listed in columns 6
and 7. The second to the last row lists the total number of times that genes not associated with Q1 have a posterior probability greater than 0.1 and 0.5. The
false-positive discovery rate is given in the last row. The results at m = 3 and m = 6 are listed in separate columns, where m is the fixed number of factors
entertained in a model of the model space.
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