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Abstract

Background: Genomic breeding value estimation is the key step in genomic selection. Among many approaches,
BLUP methods and Bayesian methods are most commonly used for estimating genomic breeding values. Here, we
applied two BLUP methods, TABLUP and GBLUP, and three Bayesian methods, BayesA, BayesB and BayesCπ, to the
common dataset provided by the 15th QTL-MAS Workshop to evaluate and compare their predictive performances.

Results: For the 1000 progenies without phenotypic values, the correlations between GEBVs by different methods
ranged from 0.812 (GBLUP and BayesCπ) to 0.997 (TABLUP and BayesB). The accuracies of GEBVs (measured as
correlations between true breeding values (TBVs) and GEBVs) were from 0.774 (GBLUP) to 0.938 (BayesCπ) and the
biases of GEBVs (measure as regressions of TBVs on GEBVs) were from 1.033 (TABLUP) to 1.648 (GBLUP). The three
Bayesian methods and TABLUP had similar accuracy and bias.

Conclusions: BayesA, BayesB, BayesCπ and TABLUP performed similarly and satisfactorily and remarkably
outperformed GBLUP for genomic breeding value estimation in this dataset. TABLUP is a promising method for
genomic breeding value estimation because of its easy computation of reliabilities of GEBVs and its easy extension
to real life conditions such as multiple traits and consideration of individuals without genotypes.

Background
The goal of genomic selection (GS) [1] is to capture all
quantitative trait loci (QTL) influencing a trait by tracing
all chromosome segments defined by adjacent markers.
With use of highly dense markers, GS is supposed to be
able to overcome the problem of traditional maker
assisted selection (MAS) that only a limited proportion of
the total genetic variance is captured by the markers of
QTL. GS has become feasible very recently with the high
throughput genotyping technology and the availability of
highly dense markers covering whole genome. Genomic

breeding value estimation is the key step in GS. A num-
ber of approaches have been proposed for estimating
genomic breeding values [1-9], among which BLUP
methods and Bayesian methods are most commonly
used. Here, we applied two BLUP methods (GBLUP [3],
TABLUP [4]) and three Bayesian methods (BayesA,
BayesB [1], BayesCπ [5]) to the common dataset provided
by the 15th QTL-MAS Workshop to evaluate and com-
pare their predictive performances.

Methods
Dataset
The common dataset consisted of an outbred population,
which had been simulated using the LDSO software [10],
with 1000 generations of 1000 individuals, followed by 30
generations of 150 individuals. 9990 SNP markers were
distributed on 5 chromosomes. Each chromosome had a
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size of 1 Morgan and carried 1998 evenly distributed
SNPs (1 SNP every 0.05 cM).
The final dataset used for evaluating genomic selection

consisted of 3220 individuals, including 20 sires, 200
dams (each sire mated with 10 dams) and 3000 proge-
nies (15 per dam). All individuals were genotyped for
the 9990 SNPs without missing or genotyping error. Of
the 15 progenies of each dam, 10 were phenotyped for a
continuous trait. The 2000 progenies with phenotypic
records and the other 1000 individuals (which had simu-
lated true breeding values) without phenotypic records
were treated as reference and validation population,
respectively.

Estimation of variance components and EBVs
The variance components and the traditional BLUP EBVs
were estimated using phenotypes and pedigree and the
software DMUv6 [11] based on the following model:

y = 1μ + Za + e

where y is the vector of phenotypes of individuals in
the reference population, μ is the overall mean, a is the
vector of additive genetic effects of the phenotyped indi-
viduals and their parents, Z is the incidence matrix of a,
and e is the vector of residual errors. The variance-cov-
ariance matrices of a and e are Aσ 2

a and Iσ 2
e , respec-

tively, where A is the additive genetic relationship
matrix, σ 2

a is the additive genetic variance, and σ 2
e is

the residual variance.
The reliabilities of the traditional EBVs were obtained

from DMU directly and calculated as the square of the
correlation between EBVs and the true unknown breeding
values.

Estimation of SNP effects
BayesA, BayesB and BayesCπ were used to estimate SNP
effects in the reference population based on the follow-
ing model:

y = 1μ + Xg + e

where g is the vector of random SNP effects, X is the
matrix of genotype indicators (with values 0, 1, or 2 for
genotypes 11, 12, and 22, respectively).
The differences between the three Bayesian methods lay

in the assumptions for the prior distribution of SNP
effects. BayesA assumes that all SNPs have an effect, but
each has a different variance. BayesB and BayesCπ assume
that each SNP has either an effect of zero or non-zero
with probabilities π and 1-π, respectively, and for those
having non-zero effects it is assumed that each SNP has a
different variance in BayesB and a common variance in
BayesCπ. In addition, in BayesB π is treated as a known
parameter, while in BayesCπ it is treated as an unknown

parameter with a uniform (0, 1) prior distribution. In this
study, we set π = 0.99 for BayesB, and adopted the same
prior distributions of g and e for the three Bayesian meth-
ods as those in [1,5].
The Markov chain was run for 50,000 cycles of Gibbs

sampling (for BayesB, 100 additional cycles of Metropo-
lis-Hastings sampling were performed for the SNP effect
variance in each Gibbs sampling cycle), and the first 5000
cycles were discarded as burn-in. All the samples of SNP
effects after burn-in were averaged to obtain the SNP
effect estimate.

Calculation of GEBVs
The genomic estimated breeding values (GEBVs) of all
genotyped individuals were obtained using five methods:
BayesA, BayesB, BayesCπ, GBLUP and TABLUP.
For BayesA, BayesB and BayesCπ, the GEBV of a geno-

typed individual was calculated as the sum of all marker
effects according to its marker genotypes [1].
For GBLUP and TABLUP, the GEBVs were estimated

based on the following model:

y = 1μ + Zu + e

where u is the vector of genomic breeding values of all
genotyped individuals with the variance-covariance matrix
equal to Gσ 2

u for GBLUP or TAσ 2
u for TABLUP. σ 2

u is the
additive genetic variance estimated from the reference
population.
The G matrix (realized relationship matrix) was con-

structed by using genotypes of all markers [3]. The TA
matrix (trait-specific marker-derived relationship matrix),
was constructed by using genotypes of all markers with
each marker being weighted with its estimated effect
obtained from BayesB following the rules proposed by
Zhang et al. [4].
The accuracies of GEBVs were calculated as the correla-

tion between GEBVs and the simulated true breeding
values.

Results and discussion
Variance components
The estimated additive genetic variance and residual var-
iance were 24.82 and 58.65, respectively. Therefore, the
estimated heritability was 0.30. These estimates were used
for the subsequent estimation of SNP effects and GEBVs.

Estimates of SNP effects
Figure 1 includes the profiles of SNP effects estimated by
BayesA (Figure 1A), BayesB (Figure 1B) and BayesCπ
(Figure 1C). These estimated effects, which are obviously
not evenly distributed, reflect the underlying architecture
of the trait. The estimated value of π in BayesCπ is 0.9986.
In general, the SNP effect profiles from the three Bayesian
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methods are quite similar. In particular, all of the three
methods show a big peak on chromosome 1, two peaks on
chromosome 2, and a peak on chromosome 3. In addition,
BayesCπ shows another peak on chromosome 3 and a
peak on chromosome 4. No peaks appear on chromosome
5 for all of the three methods. The peak positions and the
corresponding SNP effect estimates are given in Table 1.
For chromosomes 1, 2 and 3, where one, two and two
additive QTL were simulated, respectively, these peak
positions match all the simulated QTL positions quite
well, except that BayesA and BayesB missed one QTL on
chromosome 3. For chromosomes 4 and 5, where an
imprinted QTL and two epistatic QTL were simulated,
respectively, either no peak was detected or the detected

peak is far away from the simulated position. From these
results, it seems that these methods could also serve as
tools for QTL mapping and BayesCπ performed better in
this respect. The drawback of BayesA and BayesB regard-
ing the impact of prior hyperparameters and treating the
prior probability π as known has been addressed by Gia-
nola et al. [12] and Habier et al. [5]. Our results partially
confirmed their arguments.

Correlations between GEBVs by different methods and
between EBVs and GEBVs for the 20 sires
For the 20 sires, the reliability of traditional EBVs was
0.95. Table 2 shows the correlations between GEBVs by
different methods and between EBVs and GEBVs of the

Figure 1 Absolute values of estimated SNP effects by BayesA (A), BayesB (B) and BayesCπ (C).

Table 1 Peak positions of profiles of the estimated SNP effects and the corresponding estimated SNP effects

Method Chr. 1 Chr. 2 Chr. 3 Chr. 4

Pos. Effect Pos. Effect Pos. Effect Pos. Effect

BayesA 59 5.19±0.37 3660 1.01±0.90 4094 2.25±0.40

3914 0.35±0.73

BayesB 59 1.96±2.13 3660 0.73±0.82 4092 0.91±1.17

3873 0.56±0.65

BayesCπ 58 5.15±0.42 3660 0.93±0.96 4092 2.50±0.76 7234 0.53±1.51

3873 0.76±0.75 4331 0.41±0.67

Simulated QTL 57 3638 4100 6644

3875 4300
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20 sires. The correlations between EBVs and GEBVs by
different methods ranged from 0.933 to 0.966, and the
highest correlation was given by GBLUP and the lowest
by BayesCπ. In general, the GEBVs by different methods
were highly correlated with the correlation coefficients
over 0.95, indicating that the GEBVs for the 20 sires by
different methods were quite consistent.

Correlations between GEBVs by different methods for the
1000 progenies without phenotypic values
Table 3 shows the correlations between GEBVs by differ-
ent methods for the 1000 progenies without phenotypic
values. The correlations ranged from 0.812 to 0.997, and
the highest correlation was between TABLUP and BayesB,
and the lowest between GBLUP and BayesCπ. The corre-
lations among the three Bayesian methods and TABLUP
are all very high (over 0.97), indicating high similarity in
GEBVs from these methods, while the correlations
between them and GBLUP are all less than 0.9, indicating
some differences in GEBVs exist herein.

Accuracies and biases of GEBVs
The availability of true breeding values (TBVs) of the
1000 progenies without phenotypic values allowed a
more efficient assessment for methods. Table 4 shows
the correlations of TBVs and GEBVs, which measure the
accuracies of GEBVs, and regressions of TBVs on
GEBVs, which measure the biases of GEBVs, by different
methods. In terms of both accuracy and bias, the three
Bayesian methods and TABLUP performed similarly with
correlations over 0.92 and slightly downward bias. BayesB
and BayesCπ were slightly more accurate than BayesA
and TABLUP, while TABLUP yielded smallest bias.

GBLUP gave the lowest accuracy and the highest down-
ward bias.
TABLUP is an improvement of GBLUP in the way that

the G matrix is replaced with TA matrix. In construction
of the TA matrix, not only the marker genotypes, but
also the marker effects are taken into account. The
advantage of the TA matrix over the G matrix is that it
not only accounts for the Mendelian sampling term, but
also puts greater weight on loci explaining more of
genetic variance for the trait of interest. This makes
TABLUP more accurate than GBLUP. On the other
hand, although TABLUP and the Bayesian methods gave
similar accuracies, TABLUP has two important features
that Bayesian methods lack. The first is that the reliability
of an individual’s GEBV can be calculated by TABLUP
through the method outlined for GBLUP by VanRaden
[3] and Strandén et al. [13]. The second is that TABLUP
can be extended to estimate GEBVs for individuals with-
out genotypes by constructing a joint pedigree-genomic
relationship matrix according to the rule proposed by
Legarra et al. [14].

Conclusions
BayesA, BayesB, BayesCπ and TABLUP performed simi-
larly and satisfactorily and remarkably outperformed
GBLUP for genomic breeding value estimation in this
dataset. TABLUP is a promising method for genomic
breeding value estimation because of its easy computa-
tion of reliabilities of GEBVs and its easy extension to
real life conditions such as multiple traits and considera-
tion of individuals without genotypes.

List of abbreviations used
QTL: quantitative trait locus; MAS: marker assisted selection; GS: genomic
selection; BLUP: best linear unbiased prediction; GBLUP: BLUP with a realized
relationship matrix; TABLUP: BLUP with a trait specific relationship matrix;
EBV(s): estimated breeding value(s); GEBV(s): genomic estimated breeding
value(s); TBV(s): true breeding value(s); SNP: single nucleotide polymorphism.
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Table 2 Correlations between GEBVs by different
methods (the first 4 columns) and between traditional
EBVs and GEBVs (the last column) for the 20 sires

BayesB BayesCπ TABLUP GBLUP Traditional EBV

BayesA 0.999 0.995 0.995 0.972 0.942

BayesB 0.992 0.998 0.978 0.947

BayesCπ 0.986 0.956 0.933

TABLUP 0.986 0.952

GBLUP 0.966

Table 3 Correlations between GEBVs by different
methods for the 1000 progenies without phenotypic
values.

BayesB BayesCπ TABLUP GBLUP

BayesA 0.991 0.985 0.983 0.841

BayesB 0.986 0.997 0.860

BayesCπ 0.976 0.812

TABLUP 0.876

Table 4 Accuracies and biases of GEBVs for the 1000
progenies without phenotypic values.

Method r b

BayesA 0.924 1.063

BayesB 0.933 1.068

BayesCπ 0.938 1.057

TABLUP 0.924 1.033

GBLUP 0.774 1.648

r: correlation coefficient between GEBV and TBV; b: regression coefficient of
TBV on GEBV.
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