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Abstract

The concept of breeding values, an individual's phenotypic deviation from the population mean as a result of the
sum of the average effects of the genes they carry, is of great importance in livestock, aquaculture, and cash crop
industries where emphasis is placed on an individual’s potential to pass desirable phenotypes on to the next
generation. As breeding or genetic values (as referred to here) cannot be measured directly, estimated genetic
values (EGVs) are based on an individual's own phenotype, phenotype information from relatives, and, increasingly,
genetic data. Because EGVs represent additive genetic variation, calculating EGVs in an extended human pedigree
is expected to provide a more refined phenotype for genetic analyses. To test the utility of EGVs in genome-wide
association, EGVs were calculated for 847 members of 20 extended Mexican American families based on 100
replicates of simulated systolic blood pressure. Calculations were performed in GAUSS to solve a variation on the
standard Best Linear Unbiased Predictor (BLUP) mixed model equation with age, sex, and the first 3 principal
components of sample-wide genetic variability as fixed effects and the EGV as a random effect distributed around
the relationship matrix. Three methods of calculating kinship were considered: expected kinship from pedigree
relationships, empirical kinship from common variants, and empirical kinship from both rare and common variants.
Genome-wide association analysis was conducted on simulated phenotypes and EGVs using the additive measured
genotype approach in the SOLAR software package. The EGV-based approach showed only minimal improvement
in power to detect causative loci.

Background

Given increasing evidence that the majority of variation
in common, complex traits is the result of a large num-
ber of individual variants with small effects, refining
phenotypes to minimize the environmental component
is one possible approach to increasing power to detect
these variants. This work extends a common concept in
plant and animal breeding, the estimated breeding value,
to calculate estimated genetic values (EGVs) in human
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pedigrees. The breeding value is the deviation of an
individual’s phenotype from the population mean as a
result of the sum of the average effects of the genes they
carry. There are several methods for estimating breeding
values, with the Best Linear Unbiased Prediction (BLUP)
used most frequently. In its most basic form, BLUP
accounts for additive genetic and environmental covar-
iances among relatives based on known pedigree struc-
ture. Several extensions of BLUP have been developed
to calculate the genomic estimated breeding values,
which are derived directly from molecular genetic infor-
mation and are commonly used for genomic selection in
plant and animal breeding programs [1,2]. The accuracy
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of and variation in EGVs are increased when phenotype
heritability estimates are higher and by the inclusion of
additional information from relatives, so the method is
most useful in extended pedigrees. Because EGVs repre-
sent predominantly additive genetic variance (some
additional environmental variance may be included
where it mimics relatedness), the use of EGVs in place
of standard phenotypes will increase heritability and
may also increase power to detect variants of smaller
effect. Although high heritability does not guarantee the
identification of causal variants [3], it is one possibility
out of a variety of methods to increase the identification
of variants that frequently fall below the significance
threshold in genome-wide association (GWA) studies.
Zabaneh and Mackay [4] examined the suitability of
using pedigree-based EGVs in genome-wide linkage ana-
lysis, and found that this method improves power to
detect quantitative trait loci. However, because EGVs
are a product of genetic similarities of individuals in the
sample, the use of empirically derived relationship
matrices in calculating EGVs should increase power to
localize genetic factors in genome-wide association
(GWA) studies, an observation that has driven the use
of relationship matrices in artificial selection [[5] and
others].

Methods

Sample description

To determine the suitability of EGVs for human quanti-
tative traits, the simulated visit 1 systolic blood pressure
(SBP) values from the Genetic Analysis Workshop 18
(GAW18) data set were considered [6]. R princomp [7]
was used to perform principal components analysis on
the 117 unrelated individuals in the sample using a sub-
set of 28,157 single-nucleotide polymorphisms (SNPs)
selected for uniform coverage and low mutual linkage
disequilibrium (LD) from the SNPs provided. The
resulting principal component (PC) scores were pro-
jected on the full set of related individuals by assigning
offspring the mean of parental scores. Using SOLAR [8],
residual SBP values for each simulation were obtained
from fitting a polygenic model incorporating age, sex,
and the first three PCs as covariates. The value of these
covariates remained the same across all simulations, but
their effects on SBP varied. Expected relatedness (20)
based on the provided pedigree was calculated in
SOLAR. Additionally, empirical relatedness was calcu-
lated in KING [9], based on either common variants
(472,050 SNPs located on odd-numbered chromosomes)
or all variants extracted from the sequence data on odd-
numbered chromosomes. Of the 2 methods offered in
KING, the robust method was selected as it employs a
family-specific correction for substructure.
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EGV calculation

The residualized SBP values and relationship matrices,
R, equal to 2 were used in calculating EGVs. Through-
out, EGVs will be subscripted with the origin of the R
matrix so that EGV.q is derived from the expected,
pedigree-based matrix, EGVy;, from the empirical SNP-
based matrix, and EGV,q from the full sequence-based
matrix. EGVs were calculated from a variation of the
standard BLUP estimation of breeding values using a
custom script written in GAUSS (Aptech Systems, Inc.),
which is available upon request. At the core of the cal-
culation is the mixed model

o2 B
EGVE=(I+R‘1UZ> (y — XB)
3

where X is the matrix of fixed effects (sex, age, and
the first 3 PCs) included as covariates in the polygenic
analysis, ¥ is the observed value of SBP, and B is the
fixed-effects coefficient. In full, y — X8 is the residual
values derived from the variance component model dis-
cussed above. The additive genetic variance (ng) and
environmental variance (o) are also obtained from the
polygenic model fit in SOLAR. Because the R matrices
produced by KING are not positive, semidefinite—a
requirement for solving the model-the nearest correla-
tion matrix was calculated by the alternating projections
procedure described by Higham [10] and implemented
in GAUSS [11].

Genome-wide association

GWA was performed in SOLAR for the raw SBP values,
EGVpeds EGVnp, and EGVq. Although EGVs can be
estimated for unphenotyped individuals, sample size
remained the same across all tests as the simulated data
set has phenotype and genotype information for all 847
nonidentical individuals.

GWA was performed using the measured genotype
association (MGA) test, which applies a likelihood ratio
test to an additive model of allelic effects while includ-
ing a covariance matrix of expected pairwise relatedness
to control for kinship. The pairwise error variance
matrix calculated in the GAUSS script was also incorpo-
rated into the MGA model such that

Q = 0, (2®h* + I + Ee)

where Q is the phenotypic covariance matrix, ¢ is the
expected kinship matrix, K2 is narrow-sense heritability,
I is the identity matrix, cfpz and o2 are phenotypic and
environmental variance components, E is the error var-
iance matrix, and ¢ is the corresponding error para-
meter. Under the MGA test, the log-likelihood of the
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null model with no SNP effect is compared to the log-
likelihood of the alternative model with an estimated
SNP effect. The likelihood ratio test, given as minus
twice the difference of the null and alternative log-likeli-
hoods, is distributed as a chi-square variate with 1
degree of freedom.

A major advantage of the simulated data is the ability
to determine the precise false-discovery rate of the
method. For each of the top 55 variants contributing to
simulated SBP and all SNPs identified in the GWA ana-
lyses (p <5 x 1077), pairwise correlations (R*) were cal-
culated in SOLAR to assess the extent of local LD. An
associated SNP was considered accurately identified if it
fell within an LD block defined by R* 0.2 surrounding
a simulated causative gene; otherwise the associated
SNP was deemed a false positive.

Results

Expected and empirical relatedness

The use of empirical relatedness measures is increasing
in popularity as a means of resolving the variation
around pedigree-based relatedness estimates and
accounting for cryptic relatedness and inbreeding. These
factors will increase mean relatedness in a population,
as reflected in the larger SNP-based and sequence-based
pairwise kinships relative to the pedigree-based values.
In all cases, the heritability of the EGVs is approximately
double the heritability of simulated SBP with covariates
included. This is expected as the computation of EGVs
removes much of the environmental variation seen in
SBP. However, this also indicates that not all nongenetic
variation has been removed.

GWA results from EGVs
There is broad variation in the number of significantly
associated SNPs (p <5 x 107%) across the simulations
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and within or among methods. On average, EGV,, and
EGV.q identified more SNPs than the raw SBP GWA,
but the median number of associations was approxi-
mately the same (Table 1). The simulation was designed
so that 15 SNPs in MAP4 comprise 7.79% of the varia-
tion in SBP, 14 SNPs in NRF1 4.67%, 16 SNPs in TNN
3.87%, and 8 SNPs in LEPR 2.06%. Additional genes had
extremely small effects. Table 2 shows the number of
simulations in which each expected gene was identified
for each method. All methods reliably identified SNPs in
MAP4 and neighboring gene DNASE1L3, with additional
SNPs in BTD and SUMF]1 also associated because of the
extended LD and the large effect of MAP4. SNPs in LEPR
were only identified in 4% to 7% of cases, with no method
clearly outperforming the others. MAP4 and LEPR each
contained a single SNP contributing more than 2% of the
variance, which is likely why no SNPs in NRFI or TNN
were identified despite these genes contributing more to
SBP in their entirety. Among the genes that explain less
than 2% of the overall variance, none was identified by
any method in more than 5% of trials.

Of particular interest for complex traits like SBP is the
effect of rare variants, a feature reflected in the design of
the simulation with 10 of the top 55 causal variants pre-
sent at minor allele frequency (MAF) less than 1% and
28 at less than 5%. In contrast, less than 12% of signifi-
cantly associated SNPs identified by any method have a
MAF <0.05 and only 1% have a MAF <0.01.

Overall, the false-discovery rate (FDR) is low, with
FDR approximately stable across the raw SBP and EGV
GWAs (see Table 1), and little evidence of inflation in
lambda values. However, as this method aims to move
contributing variants out of the suggestively associated
“gray zone” without inflating type II error, the error rate
was also calculated specifically for SNPs associated with
the EGV values, but not the raw SBP values. These

Table 1 Description of GWA results for EGVs and SBP across simulations.

SBP EGVped EGV;np EGV;eq
Total number of significant (sig) SNPs in 100 simulations 166 134 191 273
Sig SNPs with minor allele frequency (MAF) <0.05 12.0% 52% 11.5% 6.6%
Sig SNPs with MAF <0.01 1.2% 0.7% 1.0% 0.7%
Mean number of sig SNPs 119 7.8 139 14.1
Median number of sig SNPs 8 2 8 8
stdev in number of sig SNPs 15.8 15.0 184 19.3
False-discovery rate (FDR) 7.7% 5.7% 6.7% 7.7%
FDR for SNPs not seen in SBP 52.1% 50.0% 40.4%
Smaller average p value for sig SNPs - 30.0% 57.0% 48.0%
Simulations identifying more SNPs than SBP - 14 39 36
Simulations identifying fewer SNPs than SBP 77 18 30
Simulations identifying same number of SNPs as SBP 9 43 34

For 100 replicates of simulated SBP, GWA was performed on the raw data, EGVpeq, EGVsnp, and EGV,eq. The following table gives descriptive statistics for
significant SNPs (p < 5 x 10) by method. The last five rows illustrate the performance of the EGV method relative to the raw SBP GWA.
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Table 2 Significant results for GWA of EGVs and SBP by
gene.

Gene Chr SBP EGVped EGV¢np EGVeq
LEPR 1 7 4 6 4
LRP8 1 6 0 8 5
NEXN 1 1 1 2 1
BTD 3 16 16 22 20

DNASETL3 3 100 95 100 99

MAP4 3 100 95 100 99

SUMF1 3 33 14 34 39

MTRR 5 3 0 3 4

RHOD 11 2 0 1 1

TCIRGT 11 2 1 1 1

CYP1A2 15 0 0 1 0

C1QBP 17 0 1 0 1

KRT23 17 0 1 0 1
RAIT 17 0 1 0 1
SAT2 17 0 0 1 1

COL5A3 19 0 1 1 0

For each gene contributing to simulated SBP, the table lists the number of
replicates (out of 100) in which at least one significant association was found.
Variants in 24 additional genes have small effects on SBP but were never
detected and were omitted from the table. Due to extended linkage
disequilibrium, more than one gene may be tagged by a single variant; in
particular, the associations in DNASETL3 are likely due to strong LD with major
causative gene MAPA4.

FDRs were greatly inflated, with approximately half of
these associations representing false positives (see Table 1).

Discussion

There are several measures of the utility of a novel
method of GWA: strength of associations, absolute
number of significant associations, number of genes or
genomic regions identified, and the minimization of
type I and type II error rates. Strength of association
and number of significant associations will be strongly
correlated and were expected to be the predominant
avenue of improvement in the use of EGVs. Ideally, the
use of EGVs would eliminate the influence of environ-
mental variation and drive more causative SNPs from
the “suggestive” into the “significant” association range
of p values. Although the use of EGVs does increase
heritability by removing environmental variation and
capturing only additive genetic variation, it does not
guarantee a sufficient increase in power to detect extre-
mely rare variants or deal with phenotypes with a very
large number of causative genes (e.g., height). Based on
these simulations, where many alleles with a low MAF
and small effect sizes contribute to SBP, this method does
not substantially increase the power to detect rare variants.
This method is most likely to improve power in studies of
large pedigrees where individuals have many close rela-
tives, which maximizes accuracy of EGV calculation, in
phenotypes with significant but difficult-to-quantify
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environmental components that can be removed by the
EGV method, and where the majority of genetic variation
is a result of additive effects.

Conclusions

The EGV;,, and EGVq methods, which employ empirical
kinship estimates, slightly outperformed the standard
MGA method based on the average number of truly causal
SNPs identified. However, when judged on the basis of
additional causal genes identified, the improvements are
sporadic and fail to recognize genes of medium effect.
Overall, the use of EGVs neither significantly increased
nor decreased the ability to detect rare causal variants of
small to modest effect.
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