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Abstract

In this paper, we compare logistic regression and 2 other classification methods in predicting hypertension given
the genotype information. We use logistic regression analysis in the first step to detect significant single-nucleotide
polymorphisms (SNPs). In the second step, we use the significant SNPs with logistic regression, support vector
machines (SVMs), and a newly developed permanental classification method for prediction purposes. We also
detect rare variants and investigate their impact on prediction. Our results show that SVMs and permanental
classification both outperform logistic regression, and they are comparable in predicting hypertension status.

Background
Genetic Analysis Workshop 18 (GAW18) data provide
genotypes from a real human whole-genome sequencing
study including systolic blood pressure (SBP) and diastolic
blood pressure (DBP), as well as covariates such as age,
medication use, cigarette smoking, parents, and pedigrees.
The genome-wide association study (GWAS) data of 1043
individuals come from 20 Mexican American pedigrees
enriched for type 2 diabetes from San Antonio, Texas.
The data are longitudinal, with 3 measurements for most
participants at 4 time intervals (1981 to 1996, 1997 to
2000, 1998 to 2006, and 2009 to 2011). Because there are
missing observations in the original phenotype data, simu-
lated hypertension status and blood pressure data sets
were generated according to the real genotypes and other
covariates.
In our analysis, we use the GWAS data for chromo-

some 3 and the simulated phenotype data from GAW18.
The GWAS of chromosome 3 contains 65,519 single-
nucleotide polymorphisms (SNPs). Simulated phenotypes
were generated from the real data, which consist of 849
individuals and 3 examination times. The sample for the
simulated data set is of the 849 individuals who have

both phenotypes and imputed sequence data in the real
data set. Two hundred replicates of simulated phenotype
data are provided. All individuals have simulated pheno-
type information at 3 time points with no missing data.
The goal of our analysis is to predict whether people will
have hypertension. Hence, our data set includes a binary
response for simulated hypertension status, GWAS geno-
types, age, sex, smoking status, parents, and pedigree
information. The covariate medication status is excluded
because it contains diagnosis information and is thus
highly correlated with hypertension. We choose different
numbers of SNPs and compare the corresponding pre-
diction error rates. We also compare the performance of
3 approaches including logistic regression analysis, sup-
port vector machines (SVMs) [1-3], and the newly devel-
oped permanental classification method [4].

Methods
In this paper, we treat SIMPHEN.1.csv as the training
data set and SIMPHEN.2.csv–SIMPHEN.5.csv as the
testing sets. The conclusions are similar if we use other
replicates as training and testing data sets.
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Single-nucleotide polymorphism selection using logistic
regression
Our main goals are to predict hypertension and to com-
pare the prediction performances of logistic regression
and the other 2 classification methods. In the GAW18
data, the hypertension diagnosis variable HTN is binary
(yes = 1; no = 0). The logistic regression model has been
used extensively for handling categorical responses and
shows competitive performance in a wide range of appli-
cations. We apply it in this paper as a baseline model.
Two sources of data are used in the logistic regression
analysis: simulated phenotype data and SNP data. We use
simulated phenotype data rather than the real pheno-
types because the simulated phenotypes do not contain
missing values.
In the first step, the baseline logistic regression model is

fitted with SIMPHEN.1.csv as logit(Pr(HTN = 1))= Smoke
+ Age + Sex + Age × Sex + Mother + Father + Pedigree.
In this step, we treat the 3 repeated measurements for

each participant as 3 observations to increase the power
in identifying the effects of 2 time-variant covariates,
Age and Smoke. The interaction term Age Sex is also
included because of its significance. The factors Father
and Mother represent the hypertension status of the
parents. The factor Pedigree is included to identify criti-
cal effects associated with family history. Father, Mother,
and Pedigree are all highly significant in the baseline
model.
Next, each SNP in the recommended dataset chr3-

gwas.csv is added separately into the model to measure
its significance in terms of p-values.
logit (Pr(HTN = 1)) = Smoke + Age + Sex + Age × Sex

+ Mother + Father + Pedigree + SNPi
We sort the corresponding p-values increasingly and

regard SNPs at the beginning of the list as the most signifi-
cant ones. The SNPs are listed in Table 1. We also per-
form SNP selections using linear regression analysis with
SBP and DBP as response variables separately because
HTN = 1 is defined as SBP greater than 140 mm Hg or
DBP greater than 90 mm Hg. No transformation is needed
for SBP or DBP according to Box-Cox power transforma-
tion. We expect that the most significant SNPs for
HTN are also ranked high using SBP or DBP. Indeed,

rs11711953 and rs11706549 are the 2 most significant
SNPs for all 3 responses.
Table 2 lists the 2 × 3 frequency table of hypertension

diagnosis and genotype for rs11711953, where XX
represents missing values. The p-value of the associated
chi-square test is 0.0011, which implies a significant dif-
ference in genotype frequencies between the hyperten-
sion group and the non-hypertension group.
Attempts to use a subset of only low linkage disequili-

brium (LD) SNPs (67 SNPs with mutual correlation r <0.95
and 434 SNPs with r <0.99 among the 2,500 most signifi-
cant SNPs) were less successful than using the entire list.
Therefore, in the remainder of the paper, we focus on
the entire list with the exception that SNPs in perfect LD
(r = 1) are removed, which leaves 62,735 SNPs for logistic
regression analysis.

Prediction based on logistic regression
In the second step, we add the most significant SNPs,
that is, those SNPs with smallest p-values, into the base-
line logistic regression model and use the extended
model to predict hypertension status with at most four
indicator variables for each SNP (the model could
become too complex to handle even with a small number
of SNPs). To be clear, each SNP provided in the data has
up to four genotypes including XX. For each SNP, the
insignificant genotypes (p-value ≥ 0.05) are grouped into
a single category, -Not Significant (NS).

Classification
The model is fitted on the training set SIMPHEN.1.csv
with the top 5, 10, 15, 20, 50, 100, and 200 SNPs as the
predictors and SIMPHEN.2.csv– SIMPHEN.5.csv as the
testing sets. We apply the supervised classification meth-
ods of support vector machines and the permanental
classification to predicting hypertension.
Given a training data set, {(xi, yi)|xi ∈ �p, yi ∈ {0, 1}},

where the yi indicates the class to which the covariate xi
belongs, SVMs use a projection function of the input data
into a high-dimensional feature space in which a hyper-
plane with the maximal margin is found to divide the
observations having yi = 0 from those having yi = 1. The
testing sets are then mapped into that same space and

Table 1 Most significant 18 single-nucleotide polymorphisms based on logistic regression on SIMPHEN.1.csv and
corresponding p-values

1 2 3 4 5 6 7 8 9

rs11711953 rs11706549 rs275678 rs9828391 rs7653745 rs6789918 rs9829009 rs11719850 rs7645789

4.4 × 10−13 1.1 × 10−12 6.8 × 10−11 9.9 × 10−11 1.2 × 10−10 6.4 × 10−10 8.4 × 10−10 1.5 × 10−9 2.0 × 10−9

10 11 12 13 14 15 16 17 18

rs7609918 rs6444467 rs1471695 rs7632157 rs17785248 rs6777472 rs16862782 rs12497460 rs4680987

2.1 × 10−9 2.2 × 10−9 2.2 × 10−9 3.0 × 10−9 3.0 × 10−9 3.5 × 10−9 3.7 × 10−9 4.3 × 10−9 4.7 × 10−9
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predicted to be in a category based on which side of the
hyperplane they fall on. Here we use a radial basis kernel
K(x, x′) = exp{−γ x − x′2} with SVM with the parameters
(γ ,C) where C is the size of error penalty. To tune the
(γ ,C) parameters, we use 10-fold cross-classification on
the training data.
The permanental classification method is a novel sto-

chastic classification method. It regards all observations
belonging to the same class as a realization of a stochas-
tic point process, called a permanental process. For each
class, the method provides a probability of membership
by measuring the stochastic distance between the new
observation and each class. For our data analysis, we use
the covariance function K

(
x, x′) = exp{−||x − x′||2/τ 2}

and parameter for the permanental process and 10-fold
cross-validation to tune (α, τ ) on the training data. One
of the major advantages of permanental classification is
that it is capable of handling high-dimensional data and
multiple classes efficiently.

Results and discussion
Effect of logistic regression
Given the fitted logistic regression model, the predicted
hypertension status is “yes = 1” if P̂r(HTN = 1) ≥ 0.5 and
“no = 0” otherwise. We then perform the logistic regres-
sion with different numbers (5, 10, 15, 20) of non-identical
SNPs included into the baseline model. The prediction
errors of logistic regression are summarized in Table 3. It
can be seen from Table 3 that the decrease in training
error is small, as the number of SNPs increases from 5 to
20 while the testing errors increase. This indicates that
overfitting becomes an issue when more than 10 SNPs are
included. Moreover, among the 20 SNPs added into the
model, there are 11 SNPs with mutual correlation less
than 0.90 (12 for 0.95 and 15 for 0.99). Prediction error
rates are reported in Table 3.

Rare variants
Rare variants could be critical in interpreting some indi-
vidual cases in practice [5]. However, it is hard to detect
these rare variants using regression models, so we con-
duct a separate analysis for the rare variants. We define
rare variants as genotypes whose minor allele frequency
is less than 5% over the whole study group in each SNP.
The number of rare variants found is 31,794. Chi-square
tests are performed to detect the most significant rare
variants for hypertension in terms of p-values. Table 4
lists 2 × 2 frequency tables for the top 2 rare variants.
The corresponding p-values for them are 4.06 × 10-12

and 2.64 × 10-10. As with SNPs, many identical rare var-
iants exist. Therefore, different numbers (5, 10, 15, 20)
of significant non-identical rare variants are added into
the baseline model. The program does not converge if
more rare variants are selected. When the 20 most sig-
nificant rare variants (p-value <10-8) are included, only 6
rare variants among them have mutual correlation less
than 0.99. As a result, in most cases, the prediction
errors of models with selected rare variants do not
improve much. It is not surprising that rare variants do
not work as well as the original SNPs because rare var-
iants help only with the prediction of a small portion of
patients.

Effect of classification
We use the same genotype (SNPs) and covariates
(Smoke, Age, Sex, Age Sex, Mother, Father, Pedigree)
chosen by logistic regression. The numbers of SNPs
used for SVM and permanental classification are 0, 5,
10, 15, 20, 50, 100, and 200. Tables 5, 6 and 7 list the
average prediction error rates of all four testing sets,
from the second to the fifth, by using common variants,
rare variants, and their combinations. The analysis of
the simulated data shows that the best prediction error
rates of SVM and permanental classification are both
close to 12%. Moreover, the rare variants do not provide
significant improvement for prediction.

Conclusions
The logistic regression model is used as a baseline. A
sophisticated regression model could be used, but here

Table 3 Prediction errors of logistic regression with multiple single-nucleotide polymorphisms across different data
sets and number of single-nucleotide polymorphisms included

Number of SNPs SIMPHEN.1 SIMPHEN.2 SIMPHEN.3 SIMPHEN.4 SIMPHEN.5

Training Testing 1 Testing 2 Testing 3 Testing 4

0 0.221 0.232 0.223 0.216 0.228

5 0.211 0.229 0.218 0.210 0.228

10 0.189 0.230 0.225 0.207 0.223

15 0.190 0.234 0.224 0.208 0.225

20 0.188 0.242 0.229 0.213 0.235

SNP, single-nucleotide polymorphism.

Table 2 Frequency table of hypertension status and
genotype

rs11711953 CC TC XX

No 1858 125 13

Yes 536 13 2

CC, cytosine- cytosine pair; TC, thymine- thymine pair; XX, unknown pair.
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we focus on the SVM and permanental classification
methods. The pedigree and SNP information helps pre-
dict hypertension. The strength of SVM and permanental
classification is that they are able to handle a lot of strong
LD SNPs. When the most significant 20 or fewer SNPs
from the single-SNP logistic regression are used as pre-
dictors for SVM or permanental classification classifiers,
the error rates are comparable. Moreover, the error rates
are reduced from about 22% for multi-SNP logistic
regression to 12% for SVM and permanental classifica-
tion, when the most significant 100 SNPs from the sin-
gle-SNP logistic regression are used as predictors. The
testing error rate increases somewhat for SVM, and the
testing error rate decreases for permanental classification,
when the most significant 200 SNPs are used as predic-
tors. This implies that overfitting occurs for SVM in this
situation. The nonparametric SVM and semiparametric
permanental classification can include more SNPs and
thus can result in lower prediction errors.

To identify significant SNPs, HTN as a binary response
may be less powerful than the quantitative blood pressure
measurements. We will explore the performance of SNP
selection using blood pressure measurements to selection
based on HTN in a subsequent paper. If some rare var-
iants do make contributions to hypertension, they may not
be able to be identified using regression because of the
small group size of rare variants. Moreover, the rare var-
iant provided only small improvements for predicting
hypertension. Collapsing methods [6,7] that create dummy
variables indicating the presence of every rare variant in a
gene can be more powerful, and many different such
approaches are in the literature. Based on current testing
results, the classification methods outperformed logistic
regression because they included a large number of SNPs;
the pedigree information and the common variants of
SNPs contribute greatly to prediction. In addition, SVM
and permanental classification have comparable prediction
errors when considering pedigree information.

Table 4 Rare variants

HTN/genotype rs9829721 rs776105

TT Non-TT AA Non-AA

0 17 1857 58 1816

1 37 636 62 611

AA, adenine-adenine pair; HTN, hypertension; TT, thymine-thymine pair.

Table 5 Prediction errors of support vector machine and permanental classification using common variants

Number of SNPs 0 5 10 15 20 50 100 200

Radial kernel SVM (training) 0.2301 0.0291 0.0180 0.0203 0.0130 0.0175 0.0052 0.0008

Radial kernel SVM (testing) 0.2419 0.1460 0.1350 0.1303 0.1272 0.1257 0.1213 0.1248

Permanental classification (training) 0.2231 0.1031 0.0971 0.0536 0.0404 0.0334 0.0337 0.0321

Permanental classification (testing) 0.2642 0.1517 0.1433 0.1473 0.1350 0.1347 0.1233 0.1231

SNP, single-nucleotide polymorphism; SVM, support vector machine.

Table 6 Prediction errors of support vector machine and permanental classification using rare variants

Number of SNPs 10 50 100 200

Radial kernel SVM (training) 0.0795 0.0087 0.0087 0.0087

Radial kernel SVM (testing) 0.2484 0.2440 0.2432 0.2424

Permanental classification (training) 0.0843 0.0637 0.0711 0.0575

Permanental classification (testing) 0.2533 0.2330 0.2331 0.2303

SNP, single-nucleotide polymorphism; SVM, support vector machine.

Table 7 Prediction errors of support vector machine and permanental classification using common and rare variants

Number of common and rare variants (10,10) (50,50) (100,100) (200,200)

Radial kernel SVM (training) 0.0195 0.0067 0.0067 0.0067

Radial kernel SVM (testing) 0.1350 0.1351 0.1350 0.1301

Permanental classification (training) 0.0943 007137 0.0631 0.0513

Permanental classification (testing) 0.1433 0.1330 0.1300 0.1300

SVM, support vector machine.
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