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Abstract

We propose a new method for identifying disease-related regions of single nucleotide variants in recently admixed
populations. We use principal component analysis to derive both global and local ancestry information. We then
use the summation partition approach to search for disease-related regions based on both rare variants and the
local ancestral information of each region. We demonstrate this method using individuals with high systolic blood
pressure from a sample of unrelated Mexican American subjects provided in the 19th Genetic Analysis Workshop.
Background
Genome-wide association studies commonly use admix-
ture mapping to search for disease-related regions in the
genome of recently admixed populations. Admixture
mapping refers to methods that trace the ancestral
origin of genetic loci and then determine whether the
ancestry providing that loci is in disequilibrium with
the disease. These methods assume disease-related
regions of the genome occur at different rates depend-
ing on whether they were inherited from one of the
ancestral populations.
Hypertension is a serious disease, affecting 1 in 3 adult

Americans and leading to over sixty thousand deaths in
2009 [1]. Yet, hypertension does not afflict Americans
equally across race and ethnic lines. African Americans
are twice as likely to have high blood pressure or to be
taking antihypertensive medication than are Mexican
Americans (~40 % vs. ~20 %) according to the Center for
Disease Control [2]. The non-Hispanic white population
is in the middle, with roughly 30 % having hypertension or
being on antihypertensive medication.
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Research also suggests individuals have a genetic pre-
disposition to hypertension [3], and its disparate inci-
dence across race and ethnic lines appears to make it a
strong candidate for admixture mapping. While several
methods exist for deriving this ancestral information,
principal component analysis (PCA) has proven to be a
simple, yet powerful, tool for reducing the variation of
high-dimensional data and extracting ancestry related
information from admixed samples [4, 5]. We use the
loading scores from principal components to derive both
global and local ancestral information for this reason.
Apart from admixture mapping, new research finds

that rare variants have an important role in explaining
complex diseases such as high blood pressure. We pre-
sume these rare variants contain additional disease-
related information not present in common variants of
the same region. The summation partition approach
(SPA) [6] has been used successfully to collapse small
groups of rare variants and investigate each group’s as-
sociation with a disease. The advantage of SPA is that it
can be more powerful than other collapsing techniques,
especially when working with rare variants in relatively
small data sets [6].
In this paper, we propose a new method, local ancestry–

summation partition approach (LA-SPA), which combines
the power of admixture mapping in leveraging local
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ancestry structures with the power of SPA in leveraging
the information in rare variants. We demonstrate the
LA-SPA method using individuals with high systolic
blood pressure from the 19th Genetic Analysis Work-
shop (GAW19) Mexican American unrelated sample
data set.

Methods
We explore our LA-SPA method using GAW19 genome-
wide association data from 1851 Mexican Americans [7].
Our data set contains 428,574 single-nucleotide variants
(SNVs) from odd-numbered chromosomes. Missing data
was relatively uncommon and therefore imputed by sam-
pling uniformly over the remaining non-missing observa-
tions. Phenotype data on systolic blood pressure, diastolic
blood pressure, year of examination, age, gender, and
medication usage was also available. Medication status
took 3 values depending on whether the individual was on
hypertension medication, not on hypertension medication,
or whether such a status was unknown. Systolic blood
pressure is the dependent variable of this analysis.
Our method has 4 stages. In this section, we walk

through each stage as we performed it on the GAW19
data.

Stage 1: adjust for covariates and global population
structure
We first obtain the residuals from regressing systolic
blood pressure on age, gender, medication status, and
the loading score of the first principal component of all
428,574 SNVs. These variables explain roughly 25 % of
the variation of systolic blood pressure. The loading
score represents global ancestry, and we only use the
first principal component in this stage as additional
components were deemed unnecessary (see Discussion
below for more details). We interpret the residuals as
containing information on systolic blood pressure in
excess of confounding global variables. We treat the
residuals as our new quantitative phenotype and denote
it as Y.

Step 2: divide variants into regions
We group consecutive SNVs into regions of 500. There
were 862 regions in total. We then stratified the SNVs in
each region into either “common” or “rare” SNV groups
based on their minor allele frequency (MAF >0.05 or
MAF <0.05). Roughly 80 % of SNVs in each region are
rare variants.

Step 3: calculate the local ancestry–summation partition
approach statistic
We perform PCA on the group of common variants in
each segment separately and recorded the values of the
loading scores of the first 3 principal components. Local
ancestry was estimated by performing the k-means al-
gorithm (k = 3) on these components. We interpret the
result as corresponding to the 3 possible ancestral origins
of each region: white, African, and Native American. We
then test the association between the adjusted phenotype
from stage 1 and the rare SNV group of each segment by
the local ancestral origin of the region using a variation
of SPA. The following is a brief explanation of the SPA
algorithm [6] and our variation.
Consider a region with K rare variants. The marginal

SPA test statistic is defined as:

I1 ¼
XK

i¼1

n2i Y i
�

−Y
� �2

;

where ni is the total number of ith rare variants in all
subjects, Y i

�
is the averaged phenotype for subjects

having at least 1 rare variant at the ith SNV position and
Y is the sample average. The value of I1 reflects the
strength of the association between the group of rare
variants and the residuals from stage 1.
To jointly model local ancestral information and

rare variants, we propose an LA-SPA test statistic, IA,
defined as:

IA ¼
XJ

j¼1

XK

i¼1

n2i;j Y i;j
� −Y
� �2

;

where n i,j is the total number of rare variants observed
in subjects from jth local ancestry and Y i;j

�
is the mean

phenotype of individuals with rare variants i in the jth

local ancestral cluster, and Y is defined as before. IA is a
modification of I1, similar to the I2 of Fan [6]. It reflects
the strength of the association between phenotypes and
a region of rare variants, partitioned by the local ances-
try of the region.

Step 4: calculate p values by permutation
Permutation is used to evaluate the significance of each
test statistic. For IA, 2 p values are generated reflecting
permutation within and between ancestral origins. We
refer to them as the global p value, which reflects infor-
mation between common and rare variants, and the
local p value, which reflects information within the rare
variants grouped by the common variants. We used
10,000 permutations.

Results
The number of rare variants and the 3 p values from the
test statistic of each group of variants were retained after
performing SPA twice (first for IA and then I1; I1 was
calculated for comparison purposes). P values are plot-
ted in Fig. 1 and regions with relatively low IA p values
are listed in Table 1. We believe these regions contain



Fig. 1 Manhattan plot of p values from LA-SPA and regular SPA. Important regions determined by the LA-SPA approach are marked by dotted
lines. The global p value (IA) and local p value (IA) were calculated considering the ancestral origin of the region. The p value (I1) was calculated
without considering the origin. Interesting regions are the last 4 dotted lines on chromosomes 9, 11, 17, and 19. These regions became relatively
important only after the inclusion of local ancestry information
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additional, disease-related information and warrant more
in-depth analysis despite that they are not significant when
adjusting for multiple comparisons. This includes regions
on chromosome 3 and 19, which, to our knowledge, have
not yet been linked to hypertension or diabetes.
Regions with significant IA test statistics but not sig-

nificant I1 test statistics are also interesting since those
regions became significant only after local ancestral in-
formation was taken into account. This includes regions
on Chromosomes 9, 11, 17 and 19, which are the last
four regions listed in Table 1. In the future, better results
can be obtained by increasing the sample size so that the
Table 1 Results of the LA-SPA procedure. Cytogenetic bands in eac
from the National Center for Biotechnology Information (NCBI) have

Number of rare
variants in 500

Global
p value (IA)

Local
p value (IA)

p Value (I1) Chrom

392 .0046 .0034 .0039 Chr1

434 .0027 .0022 .0051 Chr3

402 .0040 .0031 .0026 Chr7

395 .0072 .0053 .0009 Chr9

382 .0036 .0044 .1534 Chr9

409 .0053 .0050 .1154 Chr11

395 .0079 .0088 .0239 Chr17

112 .0090 .0053 .0259 Chr19
number of variants in each region can be reduced and
the local ancestral information of each region can be
calculated more accurately.

Discussion
There are several points related to this approach worth
mentioning. First, when performing PCA on all SNVs to
measure global ancestry, we initially retained all of the
loading scores of the leading principal components
(PCs). To decide how many PCs to use, we assessed the
stability of the loading scores by bootstrapping. We
randomly sampled 10,000 SNVs with replacement 1000
h identified region already linked to hypertension or diabetes
been annotated in the last column

Position of first
SNV in region

Position of last
SNV in region

Cytogenetic bands in region
already linked to hypertension

70899547 76257984 1p31.1

46964904 47452586

149519724 150490263 7q36.1

37735625 71852004 9p11.1, 9q21.11

117168826 120475298 9q33, 9q33.1, 9q33.2

77961165 84997182 11q14, 11q14.1

3631196 3962636 17p13.3

59029075 59082725
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times, and computed the scores based on each boot-
strapped SNV set. We found that the loading scores of the
first PC were highly correlated across different bootstrap
runs. In contrast, the loading scores corresponding to
other PCs were highly variable. We concluded that the
first PC from genome-wide collections of SNVs con-
sistently represents the global ancestry information.
Second, the decision to divide variants into regions of

500 was made after recognizing the tradeoff between gen-
ome resolution and the power to detect local ancestral in-
formation. Because local ancestry information is inferred
from common variants, using regions of 500 SNVs yields
an average of 100 common variants in each region that can
be used to reliably infer local ancestral information. To
judge the sensitivity of our method to this choice, we also
performed the analysis with regions of 250 and 750 SNVs,
which yield an average of 50 and 150 common variants
respectively to infer local ancestral information. Of the 8
regions identified with regions of size 500, 3 regions on
chromosomes 1, 7, and 17 were identified with regions of
size 250 and 750. However, 3 regions containing cytogen-
etic locations associated with hypertension were identified
only using regions of size 500 and not size 250 or 750. We
believe that regions of size 500 are ideal as in regions of
size 250 there is insufficient ancestry information and in
regions of size 750 there is a loss in genomic resolution.
Finally, the choice of MAF = 0.05 as the cutoff for

determining whether a variant was rare was somewhat
arbitrary. We thought that 0.05 was low enough that the
information contained within the rare variants would
not be overwhelmed by the local ancestral information
of the region. Considering multiple MAF cutoffs and ob-
serving whether the significance of the region changes
would strengthen our method.

Conclusions
The LA-SPA is a novel approach to variant selection that
combines the power of admixture mapping with the
power of SPA. When the subjects of a study are known
to have come from an admixed population, exploiting
ancestral structure can boost the signal of disease-related
rare variants and allow for a more effective screening of
the genome.
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