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Abstract

Statistical association studies are an important tool in detecting novel disease genes. However, for sequencing data,
association studies confront the challenge of low power because of relatively small data sample size and rare
variants. Incorporating biological information that reflects disease mechanism is likely to strengthen the association
evidence of disease genes, and thus increase the power of association studies. In this paper, we annotate non-
synonymous single-nucleotide variants according to protein binding sites (BSs) by using a more accurate BS
prediction method. We then incorporate this information into association study through a statistical framework of
likelihood ratio test (LRT) based on weighted burden score of single-nucleotide variants (SNVs). The strategy is
applied to Genetic Analysis Workshop 19 exome-sequencing data for detecting novel genes associated to
hypotension. The SNV-weighting LRT idea is empirically verified by the simulated phenotypes (336 cases and 1607
controls), and the weights based on BS annotation are applied to the real phenotypes (394 cases and 1457
controls). Such strategy of weighting the prior information on protein functional sites is shown to be superior to
the unweighted LRT and serves as a good complement to the existing association tests. Several putative genes are
reported; some of them are functionally related to hypertension according to the previous evidence in the
literature.
Background
Statistical association studies serve an important role in
finding putative disease genes for further biological val-
idation and reasoning. There are many association
methods, but the common essential idea is to test the
strength of statistical evidence for nonrandom variant
distribution in cases and in controls. Such statistical evi-
dence won’t be strong or reliable if data sample size is
relatively small and/or single-nucleotide variant (SNV)
mutations are rare, often the challenges imposed in
current sequencing studies [1]. Furthermore, the mech-
anism of genetic effect is complex, not just a straight
line from DNA to disease. A gene may be critical to a
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disease pathway, but the final disease status are affected
by many other factors so that the association evidence
measured solely by genotype and phenotype data could
be weak. The most recent gene-hunting researches are
challenged to find subtle disease genes responsible for
the missing heritability, especially after the low-hanging
fruits have been picked [2].
A promising approach to increasing the statistical

power of association studies is to properly integrate the
SNV information that reflects the intermediate steps of
disease development. Protein–protein interactions (PPIs)
are one important component related to disease devel-
opment. Genetic factors may function through influen-
cing PPIs. Several recent genome-wide association
studies have reported the value of incorporating PPI in-
formation into the pipeline of identifying novel genes of
type 1 diabetes and kidney dysfunction [3, 4]. However,
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their methodology mainly uses generic functional infor-
mation, for example, Gene Ontology (GO) terms, to filter
candidate genes and SNVs for test, while the association
test itself is still traditional without implicitly incorporat-
ing such information [5]. Such filtering process can loosen
the strict genome-wide significance level in favor of rela-
tively weak association factors. However, it would be nicer
to drop as few genes as possible, and at the same time to
combine the prior biological information in a quantitative
fashion.
In this study, we develop an association test frame-

work that enables implicit incorporation of the prior im-
portance of SNVs regarding their influence to PPI that
may involve the intermediate steps of disease develop-
ment. The basic idea is to group-test SNVs in functional
units of associations, for example, genes, where SNV
genotype values are weighted and thus prioritized ac-
cording to their influence information. Our framework
has two major components. First, proper generation of
SNV weights based on the annotation of their effects on
protein binding. Second, construction of a likelihood ra-
tio test (LRT) to incorporate the SNV weights. The LRT
has two advantages. First, the LRT statistic is essentially
the ratio of the likelihoods between the null and the al-
ternative regarding whether the distribution in cases dif-
fers from that in controls. Thus the LRT has enough
flexibility to enable construction and incorporation of
informative weights based on the meanings of the null
and the alternative hypotheses. Second, the LRT is opti-
mal for detecting weak and sparse signals [6, 7]. There
are different versions of the LRT; we adapt a formulation
by Chen et al. [8] as the prototype statistic for case-
control studies.

Methods
Annotate non-synonymous single-nucleotide variants
according to protein binding sites
The annotation pipeline relies on two in-house de novo
binding-site prediction methods; the first is based on se-
quence, and the second is based on structure. For the
sequence-based method, 4 Random Forrest classifiers are
designed according to (a) the training sets the classifiers
use (one for hetero-oligomeric structures and the other
for homo-oligomers), and (b) the set of features calculated
for each protein sequence. We use the method for predict-
ing the hetero-oligomeric interaction binding sites. After
training, each classifier predicts whether or not a residue
in a protein sequence belongs to a protein-binding site.
To generate the sets of features, we use a sequence-based
sliding window of 9 consecutive residues, with the center
residue (position 5) as the target. One input feature vector
includes residue labels; each label corresponds to 1of the 9
positions of a sequential sliding window [9]. A second
sequence-based feature vector includes the sequence
length and the distances between the target residue and
the closest 20 essential residues. The classifiers are imple-
mented using Scikit-learn libraries for Random Forest
[10]. For all classifiers, the number of the Decision Trees
parameter is set to 200. The other parameters are set at
the library’s default.
Both sequence-based and structure-based methods have

been assessed using 10-fold cross-validation on a set of
335 protein sequences with their binding sites extracted
from hetero-oligomeric complexes from the DOMMINO
(Database of Macromolecular Interactions) database [11].
We then select a classifier with the highest f-measure
value defined by, where Pr and Re are the precision and
recall values, respectively. Our best-performing sequence-
based classifier for hetero-oligomeric interactions reports
an f-measure of 0.38 and an accuracy of 64 %, outper-
forming the state-of-the-art approach PSIVER (a server
for the prediction of protein–protein interaction sites in
protein sequences) (f = 0.36, accuracy = 60 % on the same
set) [12].
Similarly, for the structure-based method, 4 Random

Forrest classifiers are designed according to (a) the train-
ing sets (hetero-oligomers vs. homo-oligomers), and (b)
the type of the sliding window (sequence/structure) for
generating features. The input feature vector includes
(1) labels of 9 residues in the sliding window, (2) second-
ary structure of the center residue, (3) average hydro-
phobicity, (4) statistics on the residue accessible surface
area (ASA), (5) average depth index (DPX), (6) statistics
on protrusion, and (7) length of the sequence. The sec-
ondary structure is from DSSP (dictionary of protein
secondary structure) [13] and other features are ex-
tracted from PSAIA (protein structure and interaction
analyzer) [14]. As in the case of sequence-based classi-
fiers, we apply a heterodimer structure-based binding
site classifier with the highest f-measure obtained during
10-fold cross-validation on the same data set. The best-
performing structure-based classifier achieves an f-
measure of 0.46 and an accuracy of 73 %, also outper-
forming the state-of-the-art approach PINUP (protein
interface residue prediction) (f = 0.33, accuracy = 63 %
on the same set) [15].
The variant data provided in the VCF (variant call format)

files of the odd numbers of chromosomes for uncorrelated
individuals are preprocessed using ANNOVAR (Annotate
Variation) to retrieve SNV locations on the genes [16]. One
of the current bottlenecks of the binding-site prediction
methods is the computational complexity of obtaining the
features, especially for the structure-based approach. As a
result, for this proof-of-concept paper we have applied the
sequence- and structure-based approaches to the data ob-
tained in the first sample, covering 4457 non-synonymous
single-nucleotide variants (nsSNVs) on 2711 genes regard-
ing to whether they are located on protein binding sites or
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not. A large-scale all-sample analysis is estimated to require
approximately 20,000 CPU hours of computation and will
follow.

Likelihood ratio tests
Consider group-testing SNVs in genes as functional
units. For the j th gene, the generic LRT formula for the
case-control study is

Λ gj
� �

¼ log LALU=L
� � ð1Þ

where LA , LU , and L are the likelihoods for the distribu-
tions of an appropriate disease-association measure in
cases, in controls, and in both groups, respectively. The
numerator of the LRT separates the likelihoods in cases
and in controls to model the alternative hypothesis that
there exists an association in terms of the likelihood dif-
ferentiation between the two groups; the denominator
pools the data of cases and controls together for the
likelihood of the null hypothesis of no association. Here
we adapt an LRT based on Bernoulli likelihoods [8]:
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where m and l are the number of cases and controls,
and TA

j , T
U
j and Tj (p̂

A
j , p̂

U
j and p̂j) are the total num-

bers (and the corresponding estimated proportions) of
the burden scores that exceed a threshold t in cases,
controls, and both groups, respectively.
The burden scores are the collapsed genotype values

over variants on a gene, which measure the overall vari-
ant distributions [17]. Specifically, for the j th gene of
the individual k, the burden score is

Sjk ¼
X

i¼1

nj
xik ð3Þ

where xik is the genotype value (0, 1, or 2 according to the
copy number of the minor allele) of SNV i of individual k .
We search a sequence of threshold t and choose the value
that maximizes the test statistic. LRT tests the unevenness
of burden scores in cases versus controls, not just their
enrichment in cases. So, when p̂A

j ≤ p̂U
j , the test statistic is

adjusted to be

Λ gj
� �

¼ log
p̂U
j

� �TA
j

1−p̂U
j

� � m−TA
jð Þ

p̂A
j

� �TU
j

1−p̂A
j

� � l−TU
jð Þ

p̂j

� �Tj

1−p̂j

� � mþl−Tjð Þ

ð4Þ
A gene-specific permutation test is applied to calculate

p values. It provides a proper control of the type I error
rate by accommodating the heterogenous gene sizes and
minor allele frequencies, the dependence among SNVs,
and other potential departure from Bernoulli model as-
sumptions in real data.

Likelihood ratio test with burden scores weighted by the
effect direction
The above LRT tests in equations (2) and (4) consider
the directionality of the burden scores in equation (3).
However, because SNV genotypes have directionality,
there could exist both protective and deleterious SNVs
that have reversed variant distributions in cases and in
controls. The uneven distributions would disappear in
burden scores after summing their genotype values. To
avoid such cancellation of the opposite genetic effects,
we consider switching all potential effect direction con-
sistently before calculating the burden score. Equiva-
lently, we can weigh the burden score:

Sjk ¼
X

i¼1

nj sixik ð5Þ

where si ¼ 1 if p̂A
j ≤ p̂U

j and si ¼ � 1 otherwise. To
properly control the type I error, such direction weight
is recalculated in each loop of the permutation test.

Likelihood ratio test with burden scores weighted by
protein-binding-site information
The LRT with burden scores weighted by protein-
binding-site information (LRT-BS) is similar to the LRT
with burden scores weighted by the effect direction
(LRT-DIR) in equation (5) except that si are the weights
based on the importance of variants in terms of whether
they are located on protein-binding sites. A key issue
here is to decide the principle for assigning values to si .
To address this issue, we take advantage of the simula-
tion data, where we know the genotype–phenotype map.
By comparing the statistical power, we can systematically
evaluate a spectrum of strategies with various magni-
tudes and both directions of the weights. Guidance can
be drawn from a robust weighting strategy that is good
for various types of genetic effects: protective, deleteri-
ous, and weak effects. One practice of this idea is de-
scribed in “Finding a weighting principle for binding site
annotation” below.

Combined multivariate and collapsing and C-alpha
methods
We compared the LRT-based methods with two widely
applied association tests for sequencing data. The Com-
bined Multivariate and Collapsing (CMC) method [18] is
a classic collapsing strategy. Similar to the burden
score–based tests, it evidences the genetic association
through how unevenly the mean allele frequencies are
distributed in cases and in controls. In contrast, the C-
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alpha method [19] tests the variance of allele frequen-
cies. Either method is a typical association test strategy
used here to compare with the LRT methods proposed
here.

Implementation
Regarding the implementation of the above methods,
the software Variant Tools [20, 21] was applied to ma-
nipulate data, to carry out the C-alpha and CMC
methods, and to call our own R functions, which were
being implemented for the LRT-related methods. To
ease the computation demand, we adopted a 2-stage per-
mutation strategy: a permutation loop continues into the
second stage only if the concurrent empirical p value is
less than 0.1.

Results
Finding a weighting principle for binding site annotation
Based on the known genotype-phenotype map in simula-
tion data, we systematically evaluated various strategies of
weighting SNVs. We used genotype data of the exome se-
quencing variants on odd numbers of chromosomes for
uncorrelated individuals; the phenotypes were the hyper-
tension status of the 200 simulations (336 cases and 1607
controls). We chose 3 genes with various types of genetic
effects: SPTBN4 (containing functional SNVs with rela-
tively strong protective effects), TPR (containing func-
tional SNVs with relatively weak effects), and TCIRG1
(containing functional SNVs with relatively strong dele-
terious effects). To mimic the reality that the annotation
of functional SNVs is often incomplete, we arbitrarily
chose the first 10 functional SNVs (according to their po-
sitions) as annotated, and treated the rest of the functional
SNVs in the same way as the nonfunctional SNVs. So that
we could systematically consider a variety of strategies
with various magnitudes and the relative directionality of
weighting, we studied 6 combinations of the following
Fig. 1 Statistical power under various weighting schemes. Three genes from
of weights for the first 10 functional variants (2, 5, or 10) and for the rest varia
weights: the 10 functional SNVs were assigned si = 2, 5 or
10, and the rest of the SNVs were assigned si = 1 or −1.
The power curves in Fig. 1 show that different weighting
schemes perform differently for genes with different gen-
etic mechanisms. However, the combination 1 and 10 has
a robust performance overall. It seems a good principle to
assign functional SNVs and the rest with weights that have
the same direction (i.e., the same sign) but relatively large
difference in magnitude. Thus, for applying LRT-BS in real
data analysis, we assigned weight si = 10 for nsSNVs in a
binding site, 5 for nsSNVs not in a binding site, and 1 for
the rest.

Real data analysis
Based on the real diastolic blood pressure (DBP) and
systolic blood pressure (SBP) observations, hypertension
cases were defined as individuals with SBP greater than
or equal to 140 or DBP greater than or equal to 90 ac-
cording to the American Heart Association. This cutoff
led to 394 cases and 1457 controls. Five methods were
applied to testing the association of genes annotated by
National Center for Biotechnology Information (NCBI)
RefSeqGene database: C-alpha test, CMC test, LRT,
LRT-DIR, and LRT-BS. Figure 2 shows the quantile–
quantile (Q-Q) plots of the resulting p values. CMC and
C-alpha methods gave better (lower) genomic inflation
factors (λ) than LRT methods. However, more important
than the p values themselves is their ordering profile. An
association test is good if its ordered p values lead to the
genes being ordered according to their true relevance to
the disease. Such consistency is the essence of providing
high power and a lower false discovery rate. A slightly
higher genomic inflation factor only means that we need
a p value cutoff slightly lower than the nominal thresh-
old. Based on this consideration, here we compare differ-
ent methods according to their top-ranked genes that
are obviously standing out. These genes are illustrated
the simulation answer sheet: SPTBN4, TPR, and TCIRG1. Six combinations
nts (1 or −1)



Fig. 2 Quantile–quantile (Q-Q) plots of 4 association tests for real data analysis. Upper right corner dots represent the top-ranked genes: 4 genes for
C-alpha(genomic inflation factor λ=1.11); 3 genes for CMC (λ=1.03); 5 genes for LRT(λ=1.27);7 genes for LRT-DIR (λ=1.28);and 8 genes for LRT-BS
(λ=1.28). The x-axis is �log10Pexpected ; the y-axis is �log10Pobserved

The Author(s) BMC Proceedings 2016, 10(Suppl 7):18 Page 279 of 415
by the dots on the upper right corners of the Q-Q plots
in Fig. 2 at a somewhat arbitrary p value cutoff of 1.55E-
4. The C-alpha test yielded 4 genes, CMC yielded 3
genes, and LRT, LRT-DIR, and LRT-BS yielded 5, 7, and
8 genes, respectively. The three LRTs have the same
level of λ, indicating the same capacity of controlling the
type I error. Because LRT-DIR and LRT-BS have more
genes discovered than LRT, they are likely more
powerful.
Table 1 summarizes the top genes yielded by the 5

methods. Searching the literature shows that many of
the genes are related to hypertension. In particular, ABO
has been reported as protecting against hypertension in
a Spanish population [22], and is related to ischemic
heart disease in a Pakistani population [23]. MSL2is lo-
cated at 135,867,760 to 135,916,083 bp on chr3, which
locates inside of BP24_H, the blood pressure quantitative
trait locus (QTL) #24 (human) at 135,438,224 to
161,438,224 bp. ITGA2 is reported to be associated with
hypertension in a Japanese population [24]. PSPC1is re-
ported to be related to hypertension directly [25]. TLN2
is related to pulmonary arterial hypertension (PAH) [26].
ZNF557 features theGGA28-related chromosome rear-
rangements in primate genome, while the GGA28 vari-
ation is associated with pulmonary hypertension
syndrome [27]. ZMYM5 is related to lung hypertension
recovery (U74Cv2) according to the Gene Expression
Omnibus (GEO) profiles. PAEP is reported to be down-
regulated for preeclampsia, which is defined based on
hypertension [28]. Increases in BCHE activity may be
observed in patients with nephrotic syndrome, which is
related to hypertension [29]. The location of ZBTB4
(7,362,685 to 7,387,582 bp) is inside of BP15_H (the
blood pressure QTL#15[human]) on chr17. DNAH9
gene cluster is reported to be related to young-onset
hypertension [30]. Through common microRNAs,
LUC7L2 was found to be associated with hydrochloro-
thiazide (HCTZ)-induced uric acid elevations in an anti-
hypertensive responses study of African Americans [31].

Discussion
The real data analysis shows that LRT-type methods are a
good complementary strategy to traditional methods such
as CMC and C-alpha. However, the genomic inflation fac-
tor is relatively high for the LRT-type methods. It is left
for future research to better calculate their p values. Fur-
thermore, the current method is designed to address the
case-control association studies. Another future research
project is to apply the LRT principle for quantitative traits.
The key is to set up proper likelihood functions to model
the connections between genotype and response under
the null and the alternative.
The annotations for protein-binding sites are still lim-

ited in reflecting the genetic influence to the PPIs and



Table 1 P Values of the top genes based on analyzing real data

Genes Chr C-alpha
(4 genes)

CMC
(3 genes)

LRT
(5 genes)

LRT-DIR (7 genes) LRT-BS
(8 genes)

C7orf55-LUC7L2 7 1.99E-04 (1) 9.80E-03 (115) 2.79E-01 (3005) 2.41E-01 (2659) 2.13E-01 (2385)

LUC7L2 7 1.99E-04 (1) 9.80E-03 (115) 2.57E-01 (2773) 2.85E-01 (3119) 2.25E-01 (2496)

DNAH9 17 1.99E-04 (1) 4.11E-02 (495) 8.81E-01 (8461) 9.25E-01 (8834) 7.53E-01 (7822)

AKAP8 19 1.99E-04 (1) 4.21E-02 (504) 2.43E-01 (2636) 2.29E-01 (2534) 2.75E-01 (3021)

MSL2 3 3.80E-3 (68) 4.39E-05 (1) 2.00E-01 (2) ≤1.00E-4 (1) ≤1.00E-4 (1)

ZBTB4 17 8.00E-4 (12) 9.21E-05 (2) 1.83E-02 (246) 4.11E-02 (525) 2.35E-01 (2479)

BCHE 3 1.86E-2 (287) 1.55E-04 (3) 9.11E-2 (1117) 8.53E-2 (1070) 8.69E-2 (1073)

LZIC 1 7.20E-3 (112) 1.00E-2 (121) ≤1.00E-4 (1) ≤1.00E-4 (1) ≤1.00E-4 (1)

ABO 9 4.08E-1 (4715) 1.92E-2 (2112) 6.00E-4 (4) ≤1.00E-4 (1) 4.00E-4 (3)

COL15A1 9 7.36E-1 (7836) 1.56E-1 (2030) ≤1.00E-4 (1) ≤1.00E-4 (1) ≤1.00E-4 (1)

PSPC1 13 3.06E-1 (3366) 6.73E-1 (7481) 2.00E-4 (2) ≤1.00E-4 (1) ≤1.00E-4 (1)

TLN2 15 3.70E-1 (4036) 3.63E-1 (4173) 2.00E-4 (2) ≤1.00E-4 (1) ≤1.00E-4 (1)

ZNF557 19 6.45E-1 (6876) 2.38E-1 (2870) 4.00E-4 (3) ≤1.00E-4 (1) ≤1.00E-4 (1)

ITGA2 5 6.69E-1 (7123) 5.08E-1 (5776) ≤1.00E-4 (1) 2.00E-4 (2) 4.00E-4 (3)

ZMYM5 13 8.51E-1 (8932) 7.67E-1 (9624) 2.00E-4 (2) 2.00E-4 (2) ≤1.00E-4 (1)

YIPF2 19 4.18E-1 (4538) 6.24E-2 (1007) ≤1.00E-4 (1) 2.00E-4 (2) ≤1.00E-4 (1)

PAEP 9 4.52E-1 (4862) 4.92E-1 (5617) ≤1.00E-4 (1) 2.00E-3 (31) 6.00E-4 (4)

Bolded genes are found related to hypertension in literature. The underlined p values are less than 1.55E-5. Gene ranks are given in parentheses under the p values
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disease mechanism. We are carrying out further compu-
tations to annotate the SNV effects regarding individual
PPIs as well as the PPI network as a whole [32]. The an-
notation could provide more specific properties of the
SNV effects, such as being characterized as beneficial,
deleterious, or neural. Such annotations will provide
more information on how nsSNVs are involved into the
disease process, and thus could further improve the
power of association tests. One advantage of LRT testing
is that it can construct likelihood ratios for different
sources of association measures and combine them into
a single test statistic [8]. The computation load is rela-
tively heavy because of the dependence on permutation
test, but the real data analysis shows that it is affordable
to use such a method for exome sequencing study at the
gene level.

Conclusions
Biological information on SNVs can be helpful to im-
prove the association tests. We developed a framework
to incorporate the protein-binding-site indicator of
nsSNV into a LRT test, which has the similar genomic
inflation factor as the original LRT test, but which pro-
vides more power to detect disease-associated genes.
Through analyzing Genetic Analysis Workshop 19
exome-sequencing data on odd-numbered chromo-
somes, we discovered that many top-ranked genes are
indeed related to hypertension, thus evidencing the ef-
fectiveness of this framework.
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