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Abstract

It is essential to develop adequate statistical methods to fully utilize information from longitudinal family studies.
We extend our previous multipoint linkage disequilibrium approach—simultaneously accounting for correlations
between markers and repeat measurements within subjects, and the correlations between subjects in families—to
detect loci relevant to disease through gene-based analysis. Estimates of disease loci and their genetic effects along
with their 95 % confidence intervals (or significance levels) are reported. Four different phenotypes—ever having
hypertension at 4 visits, incidence of hypertension, hypertension status at baseline only, and hypertension status at
4 visits—are studied using the proposed approach. The efficiency of estimates of disease locus positions (inverse of
standard error) improves when using the phenotypes from 4 visits rather than using baseline only.
Background
Approaches for analyzing longitudinal family data have
been categorized into 2 groups [1]: (a) first summarizing
repeated measurements into 1 statistic (eg, a mean or
slope per subject) and then using the summarized statis-
tic as a standard outcome for genetic analysis; or (b)
simultaneous modeling of genetic and longitudinal pa-
rameters. In general, joint modeling is appealing because
(a) all parameter estimates are mutually adjusted, and
(b) within- and between-individual variability at the
levels of gene markers, repeat measurements, and family
characteristics are correctly accounted for [1].
The semiparametric linkage disequilibrium mapping for

the hybrid family design we developed previously [2] uses
all markers simultaneously to localize the disease locus
without making an assumption about genetic mechanism,
except that only 1 disease gene lies in the region under
study. The advantages of this approach are (a) it does not
require the specification of an underlying genetic model,
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so estimating the position of a disease locus and its stand-
ard error is robust to a wide variety of genetic mecha-
nisms; (b) it provides estimates of disease locus positions,
along with a confidence interval for further fine mapping;
and (c) it uses linkage disequilibrium between markers to
localize the disease locus, which may not have been typed.
We extended this approach to map susceptibility genes
using longitudinal nuclear family data with an application
to hypertension. Four different outcomes were used based
on the proposed method: (I) ever having hypertension
(“Ever”), (II) incidence event with status changed from un-
affected to affected (“Progression”), (III) first available visit
as baseline only (“Baseline”), and (IV) all available time
points (“Longitudinal”). We compared the estimates of the
disease locus positions, their standard errors, the genetic
effect estimate at the disease loci, and their significance
for the 4 phenotypes to examine the efficiency gained
from using repeated longitudinal phenotypes.
Methods
Genome-wide genotypes and phenotype data
Association mapping was conducted on chromosome 3
of the genome-wide association study (GWAS) data. A
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total of 65,519 single-nucleotide polymorphisms
(SNPs) included in 1095 genes were genotyped on
chromosome 3 for 959 individuals from 20 original
pedigrees in Genetic Analysis Workshop 19 (GAW19).
Of these individuals, there were 178 (38 %) affected
offspring out of 469 offspring for phenotype (I) “Ever”;
130 (31 %) out of 421 offspring for phenotype (II)
“Progression”; 64 (11 %) out of 600 offspring for
phenotype (III) “Baseline”; and 60 (11 %) out of 565
offspring to approximately 85 (45 %) out of 189 off-
spring across the 4 visits (or 87 [21.63 %] out of 402
offspring on average) for phenotype (IV) “Longitu-
dinal” (Table 1). To compare phenotypes (I) and (II),
only individuals with at least 2 measurements were in-
cluded in the “ever” phenotype. PedCut [3] was used to
split large pedigrees with members more than 20
members into nuclear pedigrees. Consequently, we an-
alyzed a total of 138 pedigrees with 1,495 individuals
(the IDs for missing parents were added to form trios).
In divided pedigrees, the nuclear families contained be-
tween 3 and 25 individuals. Five SNPs were removed
because they failed the test of Hardy-Weinberg equi-
librium (HWE) (p value < 10−4). The HWE test was
performed using PLINK 1.07 [4] based on 56 unrelated
subjects. (For information on PLINK, see http://
pngu.mgh.harvard.edu/purcell/plink/.) A total of 22,056
genotypes from various SNPs with genotyping errors
(genotyping error rate was around 3.51 × 10−4) were fur-
ther excluded by the MERLIN 1.1.2 computing package
(see http://www.sph.umich.edu/csg/abecasis/merlin/tour/
linkage.html). None of the covariates was adjusted for in
this approach.
Multipoint linkage disequilibrium mapping
Suppose M markers were genotyped in the region R at loca-
tions of 0 ≤ t1 < t2 <… < tM ≤T. We assume there are 2 al-
leles per marker. With H (t) being the target allele at marker
position t, and h (t) being the nontarget allele, we define

Y
Dkil
1

tð Þ ¼ 1 if the transmitted paternal allele at t is H tð Þ
0 if the transmitted paternal allele at t is h tð Þ

�
;

Y
Dkil
2 tð Þ ¼ 1 if the nontransmittedpaternal allele at t isH tð Þ

0 if the nontransmitted paternal allele at t is h tð Þ
�

;

for the affected offspring Dkil ,
Table 1 Number of offspring for different phenotypes

Ever Progression B

Affected offspring 178 130 6

All offspring 469 421 6

Percentage 0.38 0.31 0

Number of nuclear families 174 149 2
and
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;

for the unaffected offspring Dkil . Then, we define the prefe-

rential transmission statistic YTkil
tð Þ ¼ Y
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2 tð Þ for

the paternal side and XTkil
tð Þ ¼ X
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2 tð Þ for the

maternal side for a trio; similarly, the preferential

transmission statistic YUkil
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2 tð Þ and

XUkil
tð Þ ¼ X

Dkil
1 tð Þ−XDkil

2 tð Þ for an unaffected trio for

both parental sides, respectively, where kil = 1,…,
N1il (for unaffected), N1il (N2il) is the number of
affected (unaffected) offspring in the family i at the
lth time point, i = 1,… n, l = 1,…, L (L = 1 or 4 in this
study).
The expectation of the statistic is μ1 kil j δ; πð Þ ¼

E YTkil
tj
� �

Φ1j
h i

¼ 1−2θtj; τ
� �

C 1−θtj; τ
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parent trios and μ2 kil j δ; πð Þ ¼ E YUkil
tj
� �

Φ2j
h i

¼
1−2θtj; τ
� �

C� 1−θtj; τ
� �N

πj for control-parent trios,
where θtj; τ is the recombination fraction between
marker position tj and disease locus position τ, the
recombination fraction Θ is a parametric function
of the parameter of primary interest (τ, the phys-
ical position of the functional variant), N is the
number of generations since the initiation of the
disease variant, Φ1 denotes the event that the
offspring is affected, Φ2 represents the event that

the offspring is unaffected, C ¼ E YTkil
τð Þ Φ1j

h i
¼ E

XTkil
τð Þ Φ1j

h i
, C� ¼ E YUkil

τð Þ Φ2j
h i

¼ E XUkil
τð Þ Φ2j

h i
; δ

¼ τ;N ;C;C�ð Þ is the vector of parameters, and πj =
Pr [h(tj) |h(τ)]. μ1kil j is the probability for an affected

offspring to receive a target allele, and −μ2kil j is the

probability for an unaffected offspring to receive a
target allele. The statistic Z1kil j ¼ XTkil j þ YTkil j and

Z2kil j ¼ XUkil j þ YUkil j were used to estimate the pa-

rameters. The estimating equations used to solve
for parameters δ are:
aseline Visit 1 Visit 2 Visit 3 Visit 4

4 60 78 125 85

00 565 426 429 189

.11 0.11 0.18 0.29 0.45

13 203 168 165 79
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where π̂ j is the average of nontransmitted parental al-
leles in the sample.
The estimating equations were solved iteratively for

parameters τ, N, C, and C*, where τ and C are the 2 pa-
rameters of interest. The variance of the disease locus
position estimate was estimated to make inferences
about the disease locus position (τ) and its genetic effect
(C) [2]. Theoretically, the genetic effect of τ, character-
ized by C, is the transmission probability that the af-
fected offspring will carry the disease allele, H, at τ.
Detailed derivations for case-parent trios in a cross-
sectional design can be found in Chiu et al. [2, 5]. We
Table 2 Significant and consistent estimates of disease locus positions

Gene* Ever

τ̂ ± SE Ĉ p Value

FBLN2 13.6464 ± 0.00026 0.80 8.85 × 10−7

C3orf19 14.6810 ± 0.00099 0.34 1.61 × 10−12

C3orf20 14.7245 ± 0.00077 0.51 1.31 × 10−6

OSBPL10 31.6853 ± 0.00051 0.41 7.69 × 10−8

CMTM8 32.3186 ± 0.00080 0.56 6.01 × 10−6

BSN 49.6596 ± 0.00062 0.83 3.42 × 10−8

RFT1 53.1117 ± 0.0012 0.37 4.07 × 10−6

ADAMTS9 64.5214 ± 0.00028 0.53 1.05 × 10−11

EPHA3 89.6014 ± 0.00042 0.80 1.41 × 10−6

EPHA6 98.2999 ± 0.00047 0.41 3.57 × 10−8

C3orf52 113.3097 ± 0.0026 0.62 6.55 × 10−9

SIDT1 114.7743 ± 0.00039 0.78 8.45 × 10−7

IFT122 130.7107 ± 0.0012 0.57 1.10 × 10−5

RBP1 140.7325 ± 0.00019 0.65 6.40 × 10−7

PLOD2 147.3469 ± 0.00098 0.34 3.56 × 10−6

LEKR1 158.2181 ± 0.00036 0.72 1.66 × 10−10

RSRC1 159.4005 ± 0.00059 0.51 4.35 × 10−6

ECT2 174.0021 ± 0.00064 0.88 1.91 × 10−6

PEX5L 181.0080 ± 0.0078 0.29 2.99 × 10−5

LPP 189.5573 ± 0.00035 0.50 1.71 × 10−6

OSTN 192.4272 ± 0.0018 0.73 5.33 × 10−14

Ĉ, the genetic effect estimate; G, previous GWAS hits; L, previous linkage hits; τ̂ , the
*Because of space limitations, we list only the 2 phenotypes with consistent estima
phenotypes is less than 10−2 cM) and significant estimates for the genetic effects (b
will present the details of this proposed methodology
elsewhere.
Gene-based association mapping was conducted for all

SNPs on chromosome 3. This approach accounts for
correlations between markers and repeated phenotypes
within subjects, and correlations between subjects per
family. The consistent estimates of hypertension locus
position using “Ever” and “Progression” are shown in
Table 2 and Fig. 1, while the consistent estimates of
hypertension locus position using baseline and longitu-
dinal data (at all 4 visits) are listed in Table 3 and Fig. 2.

Results and discussion
A total of 119 (11 %), 79 (7 %), 49 (4 %), and 42 (4 %) of
1095 genes had a significant genetic effect (P < 4.57 × 10−5

with Bonferroni correction) based on hypertension status
at “Ever,” “Progression,” baseline (“Baseline”), and 4 visits
(“Longitudinal”), respectively. There are only 3 signifi-
cantly associated genes (P ≤ 0.05) for baseline and longitu-
dinal phenotypes duplicated with the significantly
associated genes for “Ever” and “Progression” outcomes:
FETUB, IL1RAP, and C3orf21. Several hits identified here
have been reported from linkage or GWAS studies. Table 2
and their genetic effects using “Ever” and “Progression” phenotypes

Progression Previous
hitsτ̂ ± SE Ĉ p Value

13.6462 ± 0.00030 0.88 2.47 × 10−6 L

14.6802 ± 0.0010 0.34 6.87 × 10−11 L

14.7244 ± 0.00091 0.45 2.81 × 10−7 L

31.6856 ± 0.00024 0.62 3.95 × 10−6 LG

32.3183 ± 0.00052 0.70 1.20 × 10−5

49.6594 ± 0.00077 0.77 3.58 × 10−6

53.1111 ± 0.0012 0.36 2.54 × 10−5

64.5216 ± 0.00030 0.54 2.54 × 10−11 L

89.6018 ± 0.00040 0.89 1.19 × 10−5

98.2997 ± 0.00052 0.48 7.3 × 10−7 L

113.3088 ± 0.0030 0.58 7.29 × 10−6 L

114.7741 ± 0.00071 0.67 8.46 × 10−6 L

130.7118 ± 0.00060 0.71 4.90 × 10−7

140.7345 ± 0.00033 0.42 3.89 × 10−11 L

147.3469 ± 0.0016 0.34 3.02 × 10−5 L

158.2183 ± 0.00043 0.77 4.35 × 10−10 L

159.4003 ± 0.00064 0.51 1.64 × 10−5 L

174.0022 ± 0.00063 1.00 2.92 × 10−7 L

181.0145 ± 0.013 0.23 5.23 × 10−7 LG

189.5574 ± 0.00022 0.53 7.05 × 10−6

192.4301 ± 0.0012 0.80 4.11 × 10−9 G

disease locus position estimate in cM
tes for the disease locus positions (the difference between the 2 τ̂ for both
oth with P < 4.57 × 10−5, Bonferroni)



Fig. 1 Length of 95 % confidence intervals (CIs) for the estimate of the disease locus position for “Ever” and “Progression” phenotypes

Table 3 Significant and consistent estimates of disease locus positions and their genetic effects using “Baseline” and “Longitudinal”
phenotypes

Gene* Baseline Longitudinal Previous
hitsτ̂ ± SE Ĉ p Value τ̂ ± SE Ĉ p Value

GRM7† 7.4917 ± 0.00048 0.44 2.87 × 10−5 7.4871 ± 0.0015 0.75 6.04 × 10−14 LG

SLC4A7 27.4521 ± 0.000045 0.30 0.014 27.4520 ± 0.000067 0.30 0.0024 LG

SCN10A 38.7559 ± 0.0089 0.088 0.019 38.7611 ± 0.0018 0.73 0.0022

AC092058.3 39.5105 ± 0.0020 0.076 0.036 39.5102 ± 0.00024 0.21 0.00022

LTF 46.4731 ± 0.00059 0.17 0.046 46.4733 ± 0.00045 0.31 0.0099

NEK4 52.7326 ± 0.00071 0.83 0.00010 52.7277 ± 0.0024 0.86 0.00024

FAM116A 57.6101 ± 0.00023 0.69 2.58 × 10−6 57.6107 ± 0.00032 0.61 0.011

LRIG1 66.5968 ± 0.0026 0.28 0.018 66.5961 ± 0.00064 0.60 0.0022 L

TBC1D23 101.5084 ± 0.0011 0.46 0.026 101.5148 ± 0.0010 0.73 0.0011 L

ALCAM 106.7625 ± 0.00069 0.83 0.028 106.7598 ± 0.00041 0.62 0.00013 L

PLCXD2 112.9440 ± 0.00087 0.50 0.0016 112.9422 ± 0.0062 0.48 0.00020 L

LSAMP 117.0676 ± 0.00060 0.43 0.00022 117.0671 ± 0.00025 0.86 0.00012 L

ILDR1 123.2009 ± 0.0011 0.70 0.013 123.2008 ± 0.00098 0.91 0.023

PDIA5 124.3194 ± 0.0076 0.065 0.0028 124.3225 ± 0.0020 0.68 0.0086

HPS3 150.3484 ± 0.0016 0.14 1.65 × 10−5 150.3521 ± 0.00063 0.77 0.0080 L

CASRL1 157.2304 ± 0.0037 0.19 0.012 157.2295 ± 0.00094 0.28 0.031 L

C3orf55 158.7595 ± 0.00074 0.90 0.0051 158.7634 ± 0.0012 0.91 3.90 × 10−6 L

IGF2BP2 186.9725 ± 0.00018 0.74 0.041 186.9719 ± 0.00031 1.00 0.031

FETUB‡ 187.8470 ± 0.00031 0.38 0.0012 187.8503 ± 0.017 0.042 0.0021

IL1RAP‡ 191.8193 ± 0.012 0.074 0.0060 191.8203 ± 0.0012 0.79 4.75 × 10−6

C3orf21‡ 196.2815 ± 0.0036 0.62 <10−18 196.2821 ± 0.0011 0.97 0.00057

KIAA0226 198.9161 ± 0.0038 0.071 0.024 198.9168 ± 0.00076 0.15 0.022

Ĉ, the genetic effect estimate; G, previous GWAS hits; L, previous linkage hits; τ̂ , the disease locus position estimate in cM
*Displayed are all genes where p ≤ 0.05
†The gene is significant with the Bonferroni correction (P < 4.57 × 10−5) and its P values are 2.31 × 10−6 and 0.00044 for “Ever” and “Progression,” respectively
‡ The same genes for the “Ever” and “Progression” phenotypes had P values <0.05 but > 4.57 × 10−5 for the genetic effect estimate
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Fig. 2 Length of 95 % confidence intervals (CIs) for the estimate of the disease locus position for “Baseline” and “Longitudinal” phenotypes
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shows genes with a significant genetic effect (P < 4.57 × 10
−5). Table 3 presents the genes that are significant at a sig-
nificance level of 0.05. Only 1 gene, GRM7, is significant
at the level of P < 4.57 × 10−5.
Figures 1 and 2 display the 95 % confidence intervals

for the estimate of the hypertension locus position for
the 4 phenotypes centered at the estimated disease locus
position. The comparison is shown for the genes listed
in Tables 2 and 3. The standard errors of the estimates
for the disease locus position are smaller in 64 % of the
genes based on longitudinal data (Table 3) compared to
those based on baseline data. This is because those inci-
dence cases included in “Progression” were also included
in the analysis of “Ever.” Only prevalent cases, a rela-
tively small proportion, are additionally included in the
analysis of “Ever.” Thus, the results from “Progression”
and “Ever” are similar.

Conclusions
Methods of genetic analysis rely heavily on correlations
among family members’ outcomes to infer genetic ef-
fects, whereas longitudinal studies allow investigators to
study factors’ effects on outcomes and changes over time
[1]. To retrieve full information from longitudinal family
data, appropriate statistical approaches are crucial. We
proposed a multipoint linkage disequilibrium approach
accounting for multilevel correlations between markers
per subject, within-subject longitudinal observations,
and subjects within families, aiming to correctly localize
the disease locus and assess its genetic effects. This ap-
proach has several advantages: it allows us to estimate
the disease locus position, the disease locus’s genetic ef-
fect, and the 95 % confidence intervals without specify-
ing a disease genetic mode and yet making full use of
the markers and repeated measurements. In addition,
this approach treats the genotype data as random condi-
tional on the phenotype, eliminating the problem of as-
certainment bias. We applied this approach to the
baseline and longitudinal prevalence/incidence of hyper-
tension events. The efficiency of parameter estimates
was similar for the “Ever” and “Progression” categories,
but was improved with repeated longitudinal outcomes
compared to the use of “Baseline” only. This difference
between analyses might largely result from the different
total sample sizes and proportions of hypertensive sub-
jects for different phenotypes. Several identified genes
on chromosome 3 for hypertension were consistent with
findings from previous linkage and association studies.
Despite its advantages, this proposed approach also has
limitations; for example, covariate adjustment is not
available.
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