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Abstract

Background: There is great interindividual variation in systolic blood pressure (SBP) as a result of the influences of
several factors, including sex, ancestry, smoking status, medication use, and, especially, age. The majority of genetic
studies have examined SBP measured cross-sectionally; however, SBP changes over time, and not necessarily in a
linear fashion. Therefore, this study conducted a genome-wide association (GWA) study of SBP change trajectories
using data available through the Genetic Analysis Workshop 19 (GAW19) of 959 individuals from 20 extended
Mexican American families from the San Antonio Family Studies with up to 4 measures of SBP. We performed
structural equation modeling (SEM) while taking into account potential genetic effects to identify how, if at all,
to include covariates in estimating the SBP change trajectories using a mixture model based latent class growth
modeling (LCGM) approach for use in the GWA analyses.

Results: The semiparametric LCGM approach identified 5 trajectory classes that captured SBP changes across age.
Each LCGM identified trajectory group was ranked based on the average number of cumulative years as hypertensive.
Using a pairwise comparison of these classes the heritability estimates range from 12 to 94 % (SE = 17 to 40 %).

Conclusion: These identified trajectories are significantly heritable, and we identified a total of 8 promising loci that
influence one’s trajectory in SBP change across age. Our results demonstrate the potential utility of capitalizing on
extant genetic data and longitudinal SBP assessments available through GAW19 to explore novel analytical methods
with promising results.
Background
There is great interindividual variation in systolic blood
pressure (SBP) as a result of the influences of several
factors, including sex, ancestry, smoking status, medica-
tion use, stress, socioeconomic status, and, especially,
age [1]. Studies estimate strong genetic effects when
examining SBP cross-sectionally (h2 = 0.42), with even
higher estimates for longitudinal measures of SBP
change (h2 = 0.57) [2]. Yet, there are few published large-
scale genetic studies that have leveraged longitudinal
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measures of blood pressure (BP) [3, 4]. Newer studies
that have partitioned heterogeneous phenotypes into
meaningful subphenotypes have proven useful for the
identification of novel genetic susceptibilities and have
allowed for previously missing heritability to be detected
in complex disease traits (eg, cancer, autism, schizophrenia)
[5–8]. These studies suggest that methodological innova-
tions that identify homogenous subphenotypes may be use-
ful for characterizing longitudinal BP change, yet this
avenue remains largely unexplored in the genetic literature.
One possibility for identifying subphenotypes of BP

change is through a group-based trajectory analysis. Tra-
jectories can take advantage of longitudinal data to cre-
ate a new outcome variable to summarize a unique
component of the change in the phenotype, thereby
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minimizing trait heterogeneity, and allowing for a new
trait to be considered in quantitative genetic analyses,
which may allow for the identification of clinically rele-
vant genetic biomarkers for disease progression and
prognosis, such as hypertension [9]. Structural equation
modeling (SEM) can help to show if certain covariates
relate to the change trajectories, which will decrease bias
while increasing precision and accuracy in genome-wide
association (GWA) study analyses. Therefore, this study
aims to conduct a GWA study of SBP change trajector-
ies using data available through the Genetic Analysis
Workshop 19 (GAW19). We first used previously identi-
fied BP single nucleotide polymorphisms (SNPs) to per-
form SEM and model the assumed underlying
relationships between variables while taking into account
potential genetic effects. Then these SEM results were
used to inform a semiparametric latent class growth
modeling (LCGM), which was used to identify distinct
groups of SBP change trajectories within the population,
using a widely available statistical package (PROC TRAJ
for SAS) [10, 11], for use in the GWA study analyses.

Methods
Materials
GAW19 data were provided by the Type 2 Diabetes
Genetic Exploration by Next-generation sequencing in
Ethnic Samples (T2D-GENES) Consortium Project 2. Par-
ticipants’ genetic and phenotypic data were drawn from
959 individuals from 20 Mexican American families as
part of the San Antonio Family Studies (SAFS) [12].

Phenotypes
Our analysis focused on SBP, where SBP was corrected
for BP-lowering medication by adding a constant to all
SBP measures that reported medication use (SBP +
15 mm Hg) [13]. Only individuals with a minimum of 2
SBP measures who did not exhibit greater than 3 stand-
ard deviations of change in any SBP measure were used
in the final trajectory and association analyses (N = 683).
Each time-varying measure was collected at 4 time
points across 17 years; however, all subjects with at least
2 measurements were included as these methods assume
missing data are missing completely at random.

Single nucleotide polymorphism selection
Genome-wide data for 472,049 SNPs genotyped at Texas
Biomedical Research Institute on the Illumina Infinium
Bead chips: HumanHap550v3, supplemented with Huma-
nExon510Sv1; Human660W-Quadv1; Human1Mv1; and
Human1M-Duov3 arrays on odd-numbered autosomes
were provided for analysis. All SNPs used in the analyses
were filtered for Mendelian errors, monomorphic SNPs
[12], and Hardy-Weinberg equilibrium. Merlin was used
to impute missing genotypes. For the SEM model
prediction, we extracted previously identified SBP, dia-
stolic blood pressure (DBP), and pulse pressure–associ-
ated SNPs [14–19] from previous GWA studies data and
considered each SNP separately. SNPs were only included
in SEM if each genotype had at least 30 individuals. The
full genetic panel, including imputed genotypes, was used
in the trajectory association analyses.

Structural equation modeling
We used SEM to identify covariates to include in esti-
mating the SBP change trajectories. SEM is used here to
determine if potential covariates are associated with tra-
jectory class membership or associated with deviations
from the assigned class-specific trajectory to better de-
termine how and if covariates should be used in the
LCGM. For the SEM component (Mplus v7.11), we de-
fined a structure a priori to evaluate at what time points
certain covariates directly and indirectly impacted SBP
in separate SNP models, using previously identified
SNPs extracted from the full genome-wide data. A lag
effect for SBP was included to allow for current values
to be related to values of the time point immediately
prior, thereby allowing for covariates to have an indirect
effect on SBP through their impact on a previous time
point. Figure 1 illustrates the full SEM model, including
direct and indirect covariate effects tested. Generalized
estimating equations were used within the SEM frame-
work to account for the correlation within an individual
and within a pedigree. Root mean square error of ap-
proximation (RMSEA) as well as comparative fit index
(CFI), and Tucker-Lewis index (TLI) were examined to
ensure appropriate model fit. Good model fit was de-
fined as RMSEA <0.06, and CFI and TLI values close to
1.0 [20–22]. Only those variables that were significant in
at least 2 different SNP models (Fig. 1) and at multiple
time points for each of these models were included in
the final LCGM analysis; however, other variables were
considered for adjustment in the association analysis (eg,
principal components [PCs] to control for ancestry).

Latent class growth modeling
We used a semiparametric LCGM approach to identify
distinct groups of developmental trajectories [10, 23, 24].
Identification of SBP trajectories was done assuming a
censored normal distribution using multivariate mixture
model implemented in PROC TRAJ in SAS version 9.2.
This model assumes that given class membership, the
repeated measurements for the ith individual are inde-
pendent [10]. SBP was modeled across age, including
data from all 4 time points. Significant covariates in the
SEM models were included to account for their impact
on an individual’s trajectory. Final models were selected
using the Bayesian information criterion (BIC) as well as
practical considerations such as group size (N > 25) [25],



Fig. 1 Full SEM model. Diagram illustrating the full SEM model and all direct and indirect pathways included PCs, principal components
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uniqueness, and interpretability of classes. During model
selection all trajectories were assumed to follow the
same order polynomial. However, once the best model
was selected with regards to the number of classes and
overall order of polynomial, we assessed the impact of the
order of the polynomial for each class on model fit and
retained only significant intercept, linear, and quadratic
terms. The identified trajectory classes were assigned at
the individual level, based on the class with the highest
predicted posterior probability of class membership [25].

Genome-wide association analyses
Each LCGM identified trajectory group was ranked based
on health risk, defined as the average number of cumula-
tive years as hypertensive (ie, members of group 1
Fig. 2 Fitted trajectories. Fitted trajectories by sex for each group identified
exhibiting the fewest number of hypertensive years and
group 5 the greatest). We used PC scores to model differ-
ences in ancestral contributions among study participants.
PCs were calculated using the unrelated founders and a
subset of 28,156 independent (r2 < 0.2) SNPs [26]. The
resulting top 4 PCs were included as additional covariates
in association analyses, as previous analyses found these
sufficient for controlling population substructure [27]. We
used SOLAR (Sequential Oligogenic Linkage Analysis
Routines) [28] to estimate heritability. For GWA analysis
on the trajectory group membership variables, we used
MMAP, an open source software package written in C for
genetic association analysis in both population-based and
family data using linear mixed models. MMAP uses vari-
ance components within the mixed model framework to
in the LCGM analysis
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account for relatedness between individuals. For GWA
analyses, we assumed an additive genetic model, and in-
cluded the first 4 PCs as fixed effects to control for popu-
lation structure [29]. We conducted both pairwise GWA
analyses between groups with group 1 as the referent
group. Also, to take advantage of the full data set, we con-
ducted a GWA treating the rank ordered trajectories as a
continuous trait in MMAP, coded as 1 through 5. Results
were deemed genome-wide significant (GWS) when p <
1.3E−7 and suggestive when p < 1.6E-6, based on previous
San Antonio Family Studies [30] simulations.

Results
Structural equation modeling
The final SEM models included a total of 19 previously
identified BP-associated SNPs available in the GAW19
data set to identify mediators and effect modifiers to in-
clude in the identification of trajectory classes. Four of
the established BP SNPs displayed a nominally significant
(p < 0.01) association with SBP at 1 or more time points,
and were investigated further for potential effect mediators.
The SEM led to the inclusion of sex in the LCGM and the
consideration of PCs in the GWA (data not shown).

Latent class growth modeling
As the difference in SBP trajectories between men and
women were not of primary interest for this study and
Fig. 3 Q-Q Plot. Quantile-quantile (Q-Q) plot of SNP associations, color-coded
sex impacted SBP directly and indirectly at multiple time
points in the SEM, we adjusted for sex at each time
point in the LCGM. Class prediction was performed
requesting 1 to 6 groups, with the highest BIC resulting
from assignment of 5 groups with age as a quadratic
function in all classes (Fig. 2).

Heritability and covariate selection
Table 1 summarizes the results of the heritability esti-
mates and displays the significant PCs for each pairwise
group comparison. The heritability estimates range from
0.12 to 0.94, standard errors (SE) from 0.17 to 0.40
(Table 1). PC2 and PC3 were both significant predictors
of group comparisons in 1or more models.

Genome-wide association
A quantile–quantile (Q-Q) plot of the final GWA results
for all 5 approaches exhibits no strong evidence for gen-
omic inflation (Fig. 3). After filtering on minor allele fre-
quency (MAF) of greater than 1 %, association analyses
identified one GWS (p < 1.3E-7) SNP near the ATOX1
gene (rs17112252, p = 1E-8) for the pairwise association
analysis of trajectory group 2 (see Table 1). Although no
other GWA study analysis resulted in a GWS associ-
ation, an additional 7 SNPs reached suggestive signifi-
cance (p < 1.6E-6) in 1 or more GWA studies, including
rs4756864 for the group near the PLEKHA7 gene, only
by association test, and including sample size (N) and lambda values
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96 kb from rs381815, a known SBP-associated SNP
identified in Europeans, although in low linkage disequi-
librium (r2 = 0.04, CEU [Utah residents with ancestry
from northern and western Europe] HapMap r22) [15].

Discussion
We used the SEM model to identify particular time points
where certain covariates were more or less informative
and direct and indirect effects, which may modify genetic
influence on longitudinal SBP in Mexican Americans.
While age, sex, and smoking status are known to influence
cross-sectional SBP in non-genetic analyses, we found that
only age and sex had significant effects on SBP change
while accounting for genetic effects of known BP loci. We
identified 5 unique trajectories using longitudinal data to
create a new outcome variable for genetic association test-
ing. These identified trajectories are significantly heritable,
and we identified a total of 8 promising loci that influence
one’s trajectory in SBP change across age.
One limitation of using the SEM methods to inform

covariate selection is that we used previously identified
GWA SNPs associated with SBP, DBP, and pulse pressure
from cross-sectional data and identified in European,
Asian and African descent populations, which may not
generalize to Mexican Americans. These loci may not fully
account for possible genetic effects in our longitudinal
analysis of Mexican Americans and miss possible modi-
fiers to longitudinal genetic effects. The assumption of
scale in the ordinal analysis is also a limitation, as health
risk may not be equal between the ranked groups. Lastly,
another limitation is that GWA study analyses were only
performed on odd-numbered chromosomes. We expect
that additional loci associated with SBP change will be
identified in other regions of the genome in future studies.

Conclusions
The majority of investigations into the genetic underpin-
nings of SBP do not take advantage of the wealth of longi-
tudinal data available in many large cohort studies. To
address this important research gap, we have capitalized
on longitudinal assessments of SBP and extant genetic
data available through GAW19 to evaluate a novel and
unique statistical data analysis. This study assesses how
genetic variants, environment, and behavior effect pro-
gression of SBP and will provide new data to examine the
pathogenesis of hypertension. The innovative methods
considered herein have been used to identify several
promising variants associated with SBP change trajectories
and can be easily implemented in GWA for a wide range
of longitudinally assessed traits.
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