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Abstract

GAW20 provided participants with an opportunity to comprehensively examine genetic and epigenetic variation among
related individuals in the context of drug treatment response. GAW20 used data from 188 families (N = 1105) participating
in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (clinicaltrials.gov identifier NCT00083369),
which included CD4+ T-cell DNA methylation at 463,995 cytosine-phosphate-guanine (CpG) sites measured before and
after a 3-week treatment with fenofibrate, single-nucleotide variation at 906,600 loci, metabolic syndrome components
ascertained before and after the drug intervention, and relevant covariates. All GOLDN participants were of European
descent, with an average age of 48 years. In addition, approximately half were women and approximately 40% met the
diagnostic criteria for metabolic syndrome. Unique advantages of the GAW20data set included longitudinal (3 weeks
apart) measurements of DNA methylation, the opportunity to explore the contributions of both genotype and DNA
methylation to the interindividual variability in drug treatment response, and the familial relationships between study
participants. The principal disadvantage of GAW20/GOLDN data was the spurious correlation between batch effects and
fenofibrate effects on methylation, which arose because the pre- and posttreatment methylation data were generated
and normalized separately, and any attempts to remove time-dependent technical artifacts would also remove biologically
meaningful changes brought on by fenofibrate. Despite this limitation, the GAW20 data set offered informative, multilayered
omics data collected in a large population-based study of common disease traits, which resulted in creative approaches to
integration and analysis of inherited human variation.
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Background
Epigenetic processes, defined as non–sequence-dependent
heritable changes in gene expression [1], play a critical
role in human development and disease. Broadly, epigen-
etic modifications include DNA methylation, histone
modifications, and RNA-based mechanisms, as well as
their interactions. Of these, DNA methylation is the most
studied and measured in epidemiologic cohorts. With the
advent of array technology enabling methylome-wide pro-
filing at single-nucleotide resolution [2], numerous studies
have identified and validated tissue-specific methylation
patterns associated with aging [3], disease states (eg, can-
cer, obesity, autoimmune disease, among many others)
[4–6], health behaviors (eg, diet, smoking, and alcohol in-
take) [7–9], environmental conditions (eg, air pollution
and socioeconomic adversity) [10, 11], and other complex
traits. Epigenetic processes such as DNA methylation
reflect the dual influence of the underlying genomic se-
quence and the environment [12], linking innate predis-
position with modifiable risk factors, altering downstream
gene expression, and providing a plausible mechanism for
disease pathogenesis. The DNA methylation “signature”
can be both stable [13] and dynamic [14] over time, al-
though the temporal component of epigenomic variation
remains understudied owing to the limited availability of
longitudinal measurements in large cohorts, as well as of
appropriate statistical methods.
Because of the well-documented influence of sequence

mutations on epigenetic patterns [15], it is prudent for
association studies to examine both types of variation, cap-
turing the trait architecture more completely. This general
approach, which encompasses methylation quantitative
trait loci (meQTL) analysis, Mendelian randomization with
meQTL as the instrument, and other integrative tech-
niques, has been successfully implemented in several gen-
ome- and epigenome-wide analyses of complex traits, such
as glucose metabolism markers [16], blood lipids [17],
schizophrenia [18], and obesity [19]. One notable exception
is the area of pharmacogenetics, which has largely focused
on contributions of DNA sequence variants, although the
biological plausibility of links between methylation and
drug response has been known for decades [20]. DNA
methylation may serve as both the determinant of drug ef-
fects (upstream) and their modifier (downstream). For ex-
ample, methyl conjugation is a prominent mechanism of
drug metabolism, and the activities of the relevant enzymes
may be affected by upstream DNA sequence mutations
[20]. Despite evidence in support of these complex relation-
ships and their translational promise, few studies to date
have used both genetic and epigenetic variants to predict
treatment response, and even fewer pharmacoepigenetic
findings have been implemented in the clinic [21].
Recognizing the powerful promise of integrative pharma-

cogenomic research to advance the current understanding

of complex traits, the GAW20 analyzed a family-based data
set that includes epigenome-wide DNA methylation mea-
surements at > 450,000 cytosine-phosphate-guanine (CpG)
sites in CD4+ T cells before and after a pharmaceutical
intervention, and genome-wide sequence variation at
718,542 unique single-nucleotide polymorphisms (SNPs).
Other included covariates were sex, age, study site (Minne-
sota or Utah), smoking, and metabolic phenotypes (fasting
triglycerides [TGs] and high-density lipoprotein [HDL]
cholesterol before and after treatment, plus metabolic
syndrome diagnosis). In addition to these real data, the
GAW20 data distribution also included 200 replicates of sim-
ulated posttreatment methylation and TG measurements.

Methods
The GOLDN study
The Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study (clinicaltrials.gov identifier NCT00083369)
was designed to evaluate genetic contributions to lipid re-
sponse to lipid-raising and lipid-lowering interventions: a
high-fat milkshake challenge to raise plasma TGs and a
3-week daily treatment with 160 mg of micronized fenofi-
brate, respectively. Participants, who self-reported as being
predominantly of European descent, were recruited in
2002–2004 from 3-generational families previously screened
at the Minnesota and Utah centers of the National Heart,
Lung, and Blood Institute Family Heart Study [22]. Partici-
pants were eligible for screening if they were 18 years of age
or older, and came from a family with at least 2 members in
a sibship. Approximately 1350 individuals were screened
and the following exclusion criteria were applied: fasting
TGs ≥1500 mg/dL; recent history of myocardial infarction
or revascularization; history of liver, kidney, pancreas, or
gallbladder disease (including abnormal liver function tests
and creatinine levels > 2.0 mg/dL); history of nutrient mal-
absorption; current use of insulin; or currently pregnant,
breastfeeding, or not using an hormonal or barrier form of
contraception for women of childbearing potential.
Following the eligibility screening, participants were

asked to consult their physician and to provide informed
consent to discontinue lipid-lowering drugs or dietary
supplements for at least 4 weeks prior to the study.
Figure 1 illustrates the sequence of interventions. During
the first intervention (postprandial lipemia, visit 2),
which occurred approximately 1 day after the baseline
visit, participants were offered a high-fat meal (a flavored
milkshake with 83% calories from fat, 700 cal/m2) and
blood samples were drawn at 0, 3.5, and 6 h following
meal ingestion. The GAW20 data set focuses on data
from the second intervention, an approximately 3-week
open-label trial of 160 mg fenofibrate taken daily begin-
ning at visit 2 and ending at visit 3. The high-fat meal
was repeated at visit 4 (approximately 1 day after visit
3), upon completion of the fenofibrate intervention.
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Participants were given the option to complete either or
both interventions. The GAW20 data set contained pre-
(visit 2) and post-fenofibrate (visit 4) measurements of
epigenome-wide DNA methylation, genotype, lipid pro-
file (specifically fasting TGs and HDL cholesterol from
all 4 visits), metabolic syndrome diagnosis, and relevant
covariates. If not specified otherwise, the included data
were collected during visit 2.

Phenotype measurements
Participants were asked to fast for at least 12 h prior to
each study visit. TGs were measured by glycerol blanked
enzymatic method using the COBAS FARA centrifugal
analyzer (Roche Diagnostics); HDL-cholesterol was mea-
sured using the Roche/Hitachi 911 Automatic Analyzer
(Roche Diagnostics) via a cholesterol esterase/cholesterol
oxidase reaction [23]. All plasma samples were analyzed
together at the end of the study. Age and smoking
(current, past, or never) were ascertained via self-report.
Metabolic syndrome was defined using 2 sets of criteria,
provided by the National Cholesterol Education Program
Adult Treatment Panel III (NCEP/ATP) [24] and the
International Diabetes Federation (IDF) [25] (Table 1).
To ascertain specific components of the metabolic

syndrome (not included in the GAW20 release), the fol-
lowing measurements were performed in addition to the
lipid assays described above: waist circumference over
the unclothed abdomen at the umbilicus at the end of a
normal expiration, blood pressure with an automated
oscillometric device in a seated position after 5 min of
rest, and fasting glucose with a hexokinase-mediate

reaction using the Roche/Hitachi 911 Automatic Analyzer
(Roche Diagnostics) [26]. Table 2 outlines the phenotypic
summary of GAW20 participants. Participants spanned
188 families (mean family size = 5.9; SD = 4.7; median
= 4.5; interquartile range [IQR] = 3.0–7.0).

DNA methylation measurements and quality control
DNA methylation data at the pre- and post-fenofibrate
time points were generated 1 year apart. CD4+ T cells were
isolated using antibody-linked magnetic beads (Invitrogen)
from frozen buffy coat samples according to the manufac-
turer’s protocol. Cells that were captured on the beads
were then lysed and DNA was extracted using the DNeasy
Kit (Qiagen). The Infinium Human Methylation 450 K
BeadChip (Illumina) was used to quantify epigenome-wide
methylation. Following the standard steps of bisulfite
treatment, amplification, hybridization, and imaging, inten-
sity files were analyzed with Illumina Genome Studio soft-
ware, which provided beta scores (the proportion of total
signal from the methylation-specific probe) and detection
p values (1 minus the probability that the target signal was
distinguishable from negative control). All the steps de-
scribed above were performed on pre- and post-fenofibrate
data separately; quality control was conducted on pre- and
post-fenofibrate data together, as follows. Beta scores for
CpG sites where detection p value was> 0.01 or more than
10% of samples failed to yield adequate intensity were re-
moved, as were samples with more than 1.5% missing data
points. The final quality control (QC) step eliminated any
CpG sites where the probe sequence mapped either to a
location that did not match the annotation file or to > 1

Fig. 1 Sequence and timing of interventions and clinic visits for the GOLDN study (not to scale). NMR, nuclear magnetic resonance; PPL,
postprandial lipemia

Table 1 Comparison of the IDF and the NCEP/ATP definitions of metabolic syndrome

NCEP/ATP IDF

3 or more of the following:
1. Abdominal obesity: waist circumference≥ 102 cm
(men),≥88 cm (women)

2. Hypertriglyceridemia: TGs≥ 150 mg/dL
3. Low HDL cholesterol: < 40 mg/dL (men), < 50 mg/dL
(women)

4. High blood pressure: > 130/85 mmHg
5. High fasting glucose: > 110 mg/dL

Abdominal obesity as defined by the NCEP/ATP plus 2 or more of the following:
1. Hypertriglyceridemia: TGs≥ 150 mg/dL or history of treatment
2. Low HDL cholesterol: < 40 mg/dL (men), < 50 mg/dL (women), or history of
treatment

3. High blood pressure: diastolic ≥130 mmHg or systolic ≥85 mmHg or history
of treatment

4. High fasting glucose: > 100 mg/dL or previous diagnosis of diabetes
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locus. Such markers were identified by realigning all probes
(with unconverted Cs) to the human reference genome.
Following QC, there were methylation data from 463,995
CpGs, including those where methylation may be influ-
enced by a SNP on the probe. Principal components based
on the beta values of all autosomal CpG sites passing QC
were generated by using the prcomp function in R and
used to adjust for cell purity in association analysis [27]. As
a result of the QC procedures described above, a small
number of participants have measurements at either pre-
or posttreatment visit, but not both.

Batch effects
There were 3 main sources of technical variation in the
GAW20 methylation data: (a) array-to-array variation
(12 sample groups), (b) bisulfite conversion batches, and
(c) changes (ie, a linear degradation) in the performance
of the Illumina scanner laser over time. In GOLDN, the
pretreatment samples were all run a year earlier than the
posttreatment samples, and likely carry batch effects of
all 3 types.
We could control the array-to-array variation and the

bisulfite conversion batches within the pre- and post-
treatment groups with ComBat [28] normalization. Data
from pre- and posttreatment methylation measurements

were normalized at the same time with the same soft-
ware in 2 separate batches, as follows. Within each treat-
ment group (ie, pre- or post-fenofibrate), all beta scores
for CpGs that passed QC were normalized using Com-
Bat with randomly selected subsets of 20,000 CpGs per
run, each array of 12 samples as a “batch,” and adjust-
ments for both plate and position within. Because the
array groups are perfect subsets of the bisulfite conver-
sion batches, such normalization corrects for batch ef-
fects of types (a) and (b) within each treatment group.
Probes from Infinium I versus Infinium II chemistries
present on each array were normalized separately, and
beta scores from Infinium II probes were adjusted using
a previously published equation [29].
However, the treatment status (pre- or post-fenofibrate)

was perfectly correlated with the time when the data were
generated. Therefore, any methylation changes observed
from pre- to posttreatment represent both the effects of
fenofibrate and processing time batch effects (ie, scanner
drift). To avoid erasing treatment effects, all normalization
took place within each treatment group (ie, pre- and
post-fenofibrate treatment data were not normalized to-
gether) as described above. As a result, longitudinal com-
parisons of epigenetic data are affected by batch effects of
all three types, whereas batch effects in cross-sectional
analyses were removed through ComBat normalization.

Genotyping
Genomic DNA was extracted from blood samples and
purified using Puregene (Gentra System) according to the
manufacturer’s protocol [30] in 842 GOLDN participants.
Genotype at 906,600 (869,161 autosomal) loci was ascer-
tained using the Affymetrix Genome Wide Human SNP
Array 6.0 (Affymetrix) and the Birdseed algorithm; calling
was performed in batches [31]. After removing mono-
morphic SNPs (55,530), SNPs with call rate < 96%
(82,462), and Mendel errors (12,627), 718,542 unique
autosomal SNPs (and 2 duplicated SNPs, chr2: rs1462062
and chr3: rs12635398) were available for further analyses.
Additionally, 16 participants with call rate < 96% and 4
duplicates were removed, and 7 sample switches were
corrected, with 822 genotyped individuals remaining in
the data set after all QC procedures. To limit file size and
facilitate data distribution, the GAW20 data set did not
include imputed genotypes.

Results and discussion
In the spirit of omics integration implemented in the
GAW19 data set, which contained whole genome
sequencing and transcriptomic data [32], GAW20 offered
opportunities to jointly examine comprehensive patterns
of DNA methylation and sequence variation in a
family-based study. Further analytic opportunities were
presented by repeated measurements of both DNA

Table 2 Demographic and clinical characteristics of GAW20
participants

Mean/median (SD/IQR) N

Female, n (%) 576 (52.1) 1105

Age, yearsa 48.2 (16.3) 1105

Center, n (%): 1105

Minnesota 565 (51.1)

Utah 540 (48.9)

TGsvisit 1, mg/dLb 119 (79;180) 802

TGsvisit 2, mg/dLb 109 (73;171) 1103

TGsvisit 3, mg/dLb 75.0 (53;112) 625

TGsvisit 4, mg/dLb 75.0 (53;108) 818

HDL-cholesterol visit 1, mg/dLa 46.5 (13.2) 802

HDL-cholesterol visit 2, mg/dLa 47.2 (13.1) 1104

HDL-cholesterol visit 3, mg/dLa 49.3 (13.4) 793

HDL-cholesterol visit 4, mg/dLa 49.4 (13.5) 861

Smoking, n (%): 1104

Never smoker 780 (70.7)

Past smoker 239 (21.6)

Current smoker 85 (7.7)

NCEP/ATP diagnosis of metabolic
syndrome, n (%)

418 (37.8) 1105

IDF diagnosis of metabolic syndrome,
n (%)

458 (41.4) 1105

aMean (SD) bMedian (IQR)
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methylation and lipid outcomes (before and after the feno-
fibrate intervention), as well as by the lipid-lowering treat-
ment itself, which opened the door for pharmacogenomic
investigations. In addition to the real data from the
pharmaceutical intervention, GAW20 included a compan-
ion problem aimed at discovering associations between
methylation variants and TG response to a fictional drug
using simulated data from 200 independent replications.
By measuring multilayered omics and phenotypic char-

acteristics on the same participants, the GAW20 data set
provided a springboard to develop much-needed methods
for integrating methylation, genomic, and pharmacoepide-
miologic data in large studies. To date, the increasing
availability of high-dimensional omics data has outpaced
the evolution of analytic tools, limiting discovery and
translational applications [33]. Integrated analyses are
poised to better reflect the underlying biological architec-
ture of complex traits and in some cases strengthen causal
inference [34]. However, multidimensional data pose a
number of challenges related to statistical power and/or
multiple testing burden, correlations between omic layers,
confounding, and other method-specific emergent issues
[33]. As a result, the optimal method for integrated ana-
lysis is likely to vary by research question and data struc-
ture; by standardizing the latter, GAW20 enabled the
creativity of the former, supporting diverse approaches
and solutions to common challenges.
Even though the GOLDN data set came with unique ad-

vantages, including longitudinal measurements and
well-characterized genomic and epigenomic variation, cer-
tain features of the GAW20 data deserve further consider-
ation. First, DNA methylation was quantified on CD4+ T
cells, the most abundant lymphocyte in whole blood. This
choice leveraged an easily accessible tissue as well as
addressed the possibility of confounding by cell type, but
may have muted the biological relevance of any findings
resulting from the tissue-specific nature of DNA methyla-
tion [35]. Second, all GOLDN participants were of Euro-
pean American descent, which limited both confounding
by population stratification and generalizability to other
ethnic groups. Third, the methylation data had already been
normalized, restricting the participants from improving
current approaches to batch effects and probe chemistry
corrections. Furthermore, because normalization on pre-
and post-fenofibrate batches of samples was performed sep-
arately in GOLDN, investigations of longitudinal changes
in methylation were hampered by the inextricable correl-
ation between batch effects and fenofibrate effects on
methylation. However, batch effects in cross-sectional
analyses of methylation data and metabolic phenotypes
were successfully removed using ComBat normalization,
and other approaches to the batch effects problem were
explored during the GAW20 workshop [36–38], offering
possible solutions to future studies of epigenetic variation.

Conclusions
The GAW20 data set provided a rich environment for
timely methodological exploration at the intersection of
DNA sequence, methylation, and complex traits, includ-
ing response to drug treatment.
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