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Abstract

Even though there has been great success in identifying lipid-associated single-nucleotide polymorphisms (SNPs),
the mechanisms through which the SNPs act on each trait are poorly understood. The emergence of large,
complex biological data sets in well-characterized cohort studies offers an opportunity to investigate the genetic
effects on trait variability as a way of informing the causal genes and biochemical pathways that are involved in
lipoprotein metabolism. However, methods for simultaneously analyzing multiple omics, environmental exposures,
and longitudinally measured, correlated phenotypes are lacking. The purpose of our study was to demonstrate the
utility of the structural equation modeling (SEM) approach to inform our understanding of the pathways by which
genetic variants lead to disease risk. With the SEM method, we examine multiple pathways directly and indirectly
through previously identified triglyceride (TG)-associated SNPs, methylation, and high-density lipoprotein (HDL),
including sex, age, and smoking behavior, while adding in biologically plausible direct and indirect pathways. We
observed significant SNP effects (P < 0.05 and directionally consistent) on TGs at visit 4 (TG4) for five loci, including
rs645040 (DOCK7), rs964184 (ZPR1/ZNF259), rs4765127 (ZNF664), rs1121980 (FTO), and rs10401969 (SUGP1). Across
these loci, we identify three with strong evidence of an indirect genetic effect on TG4 through HDL, one with
evidence of pleiotropic effect on HDL and TG4, and one variant that acts on TG4 indirectly through a nearby
methylation site. Such information can be used to prioritize candidate genes in regions of interest, inform
mechanisms of action of methylation effects, and highlight possible genes with pleiotropic effects.

Background
Lipid traits, such as triglyceride (TG) and high-density lipo-
protein (HDL) cholesterol concentrations, are highly herit-
able; estimates range from 20 to > 70%, with common
variants estimated to explain approximately 30 to 33% of
the variance for these traits [1, 2]. Genome-wide association
studies (GWAS) have identified more than 100 SNPs asso-
ciated with lipid traits, many of which are shared across
more than one lipid trait [1–8]. Even though there has been
great success in identifying lipid-associated SNPs, the

mechanisms through which these SNPs act on each trait
are poorly understood. The emergence of large, complex
biological data sets in well-characterized cohort studies of-
fers an opportunity to investigate the genetic effects on trait
variability as a way of informing the causal genes and bio-
chemical pathways that are involved in lipoprotein metab-
olism. However, methods for simultaneously analyzing
multiple omics, environmental exposures, and longitudin-
ally measured, correlated phenotypes are lacking.
The purpose of our study was to demonstrate the utility

of the structural equation modeling (SEM) approach to in-
form our understanding of the pathways by which genetic
variants lead to disease risk. With the SEM method, we can
examine multiple pathways directly and indirectly through
previously identified TG-associated SNPs, methylation, and
HDL, including sex, age, and smoking behavior, while
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adding in biologically plausible direct and indirect path-
ways. Although SEM has been used to examine the influ-
ence of genetic variants on disease through environmental
exposures [9], on gene expression [10], and pleiotropy [11],
to our knowledge this will be the first study to investigate
pathways between GWAS-established SNPs and a disease
risk factor while accounting for environmental exposures,
correlated phenotypes, and epigenetic markers simultan-
eously using an SEM framework. Thus, using the GAW20
data, we will show the usefulness of the SEM results to in-
form the prioritization of candidate genes in regions of as-
sociation, inform mechanisms of action of methylation
effects, and inform possible genes with pleiotropic effects.

Methods
Study sample
GAW20data were provided by the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study. In-
dividual genetic and phenotypic data are drawn from a
total of 1105 adults from 188 families. Of these, 810 in-
dividuals from 172 families have been genotyped on the
Affymetrix 6.0 (Affymetrix, Inc., Santa Clara, CA, USA).

Phenotypes/covariates
Our analyses focused on fasting TG as the primary out-
come measure. Secondary outcomes included DNA

methylation and HDL. Of those with genotype data, 707
participants had whole-genome methylation data measured
from CD4+ T cells at visit 2. The HM450K array was used
to measure DNA methylation (Illumina, Inc., San Diego,
CA, USA) following bisulphite conversion. The platform
detects methylation status of 485,577 CpG (cystine-pho-
sphate-guanine) sites by sequencing-based genotyping of
bisulphite-treated DNA. The methylation score for each
CpG is reported as a β value, ranging from 0 (nonmethy-
lated) to 1 (completely methylated), according to the inten-
sity ratio of detected methylation. We calculated principal
components (PCs) using methylation β values across all
CpGs in R (v3.3.1) and used the first four PCs to adjust to
control for cell purity and batch effects prior to performing
association analyses. Covariates included sex, baseline age,
and study center. Additionally, we adjusted for baseline
smoking status, as had been done in previous genetic and
methylation association analyses [12–15].

SNP and CpG selection
We selected established TG-associated SNPs [2, 16]
available on the Affymetrix 6.0, array (Table 1) to evalu-
ate direct and indirect SNP effects on TG in our SEM
framework. To evaluate indirect effects through methy-
lation, we searched for CpG sites near our tag variant
(±10 kb) for inclusion; however, as the focus of this

Table 1 TG-associated SNPs and nearby CpGs included in SEM models

Rsid Chr Pos (hg19) Gene EA/OA EAF PMID # of
CpGs ±
10 kb

CpGs included in final modela Parameters # Variables
(Dependent/
Independent)

rs1748195 1 63,049,593 DOCK7 G/C 0.636 18193043 1 cg00161770 55 9/6

rs645040 3 135,926,622 RPL31P23/PCCB A/C 0.807 24097068 2 cg15219878 55 9/6

rs998584 6 43,757,896 VEGFA C/A 0.543 24097068 6 cg03143046, cg01353538,
cg20940044, cg25373579,
cg23879496, cg12682870

75 14/6

rs10503669 8 19,847,690 LPL G/T 0.909 18193043 0 cg18449136a 55 9/6

rs964184 11 116,154,127 ZPR1/ZNF259 G/C 0.874 24097068 24 cg06595719, cg14815609,
cg05862431, cg11835342,
cg14371153, cg17490921

75 14/6

rs4765127 12 123,026,120 ZNF664 G/T 0.672 24097068 13 cg19078769, cg00201185,
cg10922530, cg02647265

67 12/6

rs4775041 15 58,674,695 Intergenic G/C 0.720 18193043 1 cg25188724 55 9/6

rs3198697 16 15,129,940 PDXDC1 C/T 0.569 24097068 5 cg16724811, cg06978461,
cg03245889, cg03928410,
cg26985681

71 13/6

rs1121980 16 53,809,247 FTO C/T 0.529 24097068 2 cg02252501, cg03312170 59 10/6

rs8077889 17 41,878,166 C17orf105/
MPP3

T/G 0.798 24097068 2 cg13317831, cg01571583 59 10/6

rs7248104 19 7,224,431 INSR G/A 0.575 24097068 2 cg09779027, cg00428638 59 10/6

rs10401969 19 19,407,718 SUGP1 A/G 0.929 24097068 5 cg00477287, cg01313994,
cg01559787, cg08112740,
cg19643441

71 13/6

Abbreviations: Chr chromosome, EA effect allele, OA other allele, PMID pubmed article ID number, Pos base pair position on chromosome
aCpGs within 10 kb ± and included in the final model are listed for all SNPs except rs10503669, which had only one CpG < 20 kb ±
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paper is direct and indirect SNP effects on TG at visit 4
(TG4), we do not report significant direct effects of CpG
methylation on TG. For one SNP, rs10503669, there
were no CpGs within 10 kb, so we extended the window
to ±20 kb (Table 1). Table 1 provides the total number
of CpGs available on the HM450K array that have
passed quality control (QC) filters and are within ±10 kb
of our tag SNPs.

SEM
For the SEM, we defined a structure a priori based on hy-
pothesized pathways to evaluate how certain covariates dir-
ectly and indirectly influenceTG4.Our SEM framework
estimates all plausible pathways simultaneously, so each esti-
mate can be considered conditional on all other possible
pathways modeled within each locus. A lag effect for TG
and HDL was included to allow current values to relate to
the time point immediately prior, thereby allowing for covar-
iates to have an indirect effect on TG and/or HDL through
their impact on a previous time point. Huber-White sand-
wich estimation (HSE) was used to account for family re-
latedness and correlation within a household [17]. Root
mean square error of approximation (RMSEA), comparative
fit index (CFI), and Tucker-Lewis index (TLI) were exam-
ined to ensure appropriate model fit. As a consequence of
the small sample size compared to model complexity we
considered RMSEA values ≥0.10 and CFI or TLI ≤0.9 as an
indicator of poor model fit [18–20]. For each locus, if our
full model did not meet these fit criteria, nonsignificant
CpGs (P > 0.2) were removed from the model and reevalu-
ated for model fit. For all loci, model fit criteria were met
following this step. Figure 1 illustrates the full models and
shows all segments along pathways. Mplus Version 7.4 was
used for all SEM; maximum likelihood estimation was used.

Even though our SEM framework simultaneously estimated
the effect of SNP across each segment of the modeled path-
ways, we report only direct and indirect effects on TG4 for
the SNPs that reached nominal significance (P < 0.05) and
displayed directionally consistent effects with previous
GWAS findings.

Results
Our sample included up to 707 participants of the GOLDN
study (50% women); the average age of participants at the
time of the baseline examination was 48 years. It is worth
noting that all participants in the GOLDN study received
treatment with fenofibrates between visits 2 and 3, which
resulted in a decrease in mean TG and a decrease in the
variance (mean[SD] TG1 = 106.35[106.35]; TG2 =
140.16[99.34]; TG3 = 92.26[57.41]; TG4 = 90.14[55.07]).
We observed significant indirect SNP effects (P < 0.05

and directionally consistent) on TG4 for five loci (Table 2),
including rs645040 (DOCK7), rs964184 (ZPR1/ZNF259),
rs4765127 (ZNF664), rs1121980 (FTO), andrs10401969
(SUGP1). We did not identify any significant direct effects
of any SNP on TG4 after accounting for indirect effects
through early measured TG, HDL or CpG methylation.
For both rs645040 (Fig. 2a) and rs1121980, we observe a
significant direct effect on HDL at visit three (HDL3)
through which the SNP has a significant (P value < 0.05
and directionally consistent) indirect effect on TG4. Both
variants were associated with TG in previous GWAS;
rs1121980 was also associated with HDL [2]. Although
rs645040 was not previously associated with HDL,
rs483465, which lies only approximately 120 kb upstream
of rs645040 (R2 = 0.904), has been associated with HDL.
For both of these loci, the effect previously observed on
TG and HDL does not appear to be a result of pleiotropy,

Fig. 1 Diagram illustrating the full SEM model
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but rather an indirect effect of the SNP on TG through its
effects on HDL. Similarly, rs10401969, which displays a
significant indirect effect through HDL at visit 1 (HDL1)
on TG4, does not display a significant independent direct
effect on TG. Even though this locus has not been associ-
ated with HDL, it has been associated with TG,
low-density lipoprotein (LDL) cholesterol, and total chol-
esterol (TC).
For rs964184 (ZPR1/ZNF259), which was previously as-

sociated with both HDL and TG [2], we identified direct ef-
fects on both HDL1 and TG1 through which the SNP
displays a significant (P < 0.05 and directionally consistent)
effect on TG4 (Fig. 2b). Also, the effect of this locus on TG
across all visits remains significant after Bonferroni correc-
tion (P value < 0.004, 0.05/12 loci examined), as does the
total effect of the SNP on TG4 accounting for all proposed
pathways. Contrary to the three loci mentioned above, we
do find evidence of an independent direct association for
rs964184 with both TG and HDL. This suggests a model
whereby a common single mechanism affects multiple lipo-
protein concentrations, which is indicative of true plei-
otropy. Indeed, the complexity of lipoprotein metabolism
means that genes and biochemical pathways can be in-
volved in metabolism of several lipoprotein classes [21].
Finally, we also observed a nominally significant (P value

< 0.05) and directionally consistent indirect effect for
rs4765127 (ZNF664) on TG4through a nearby CpG
(cg02647265), which lies 4 kb upstream of our tag SNP in
the 5′UTR (untranslated region) of CCDC92, the gene

adjacent to ZNF664. While our tag SNP lies within ZNF664,
variants within CCDC92 also have been associated with
multiple lipid levels and lipoprotein size, also suggesting
CCDC92 as a candidate gene for this region [22, 23]. Even
though this variant was associated with both HDL and TG
in previous GWAS [2], we found no evidence of a direct as-
sociation of this SNP on either phenotype (Fig. 2c). Although
we do observe an effect of the SNP mediated through a
nearby CpG on TG, we did not explicitly model an associ-
ation with the CpG on HDL. Because of the proximity of
cg02647265 to the 5′ end of two genes (CCDC92and
ZNF664), further investigation into the association of this
CpG with expression is warranted to further elucidate the
causal gene underlying this GWAS association signal.

Discussion
We aimed to highlight the utility and flexibility of SEM for
adding to our understanding of the genetic underpinnings
of disease risk by investigating pathways between
GWAS-established SNPs and a disease risk factor, TG,
through correlated phenotypes and epigenetic markers sim-
ultaneously. There is substantial interest in the field for ap-
proaches to integrate multiple types of phenotypic and
omics data so that a better understanding of disease mecha-
nisms can be achieved. Using the GAW data, we were able
to determine if the previously observed SNP effects on TG
could be explained by an indirect effect of the SNP through
HDL and nearby CpG sites. We identified three loci where
associations with TG were indirect through HDL and one

Table 2 Parameter estimates for significant pathways from SNP, through intermediate exposure, to TG4

Intermediate Pathways Beta SE P RMSEA CFI TLI

rs645040

Through HDL3 SNP→ HDL3→ HDL4→ TG4 0.229 0.115 0.046 0.083 0.96 0.93

SNP→ HDL3→ TG3→ TG4 0.597 0.286 0.037

rs964184

Through TG1 SNP→ TG1→ TG2→ TG3→ TG4 −12.48 2.406 < 0.001 0.07 0.94 0.92

Through HDL1 SNP→ HDL1→ HDL2→ TG2→ TG3→ TG4 −0.819 0.392 0.037

SNP→ HDL1→ HDL2→ HDL3→ TG3→ TG4 −2.204 0.903 0.015

SNP→ HDL1→ HDL2→ HDL3→ HDL4→ TG4 − 0.857 0.382 0.025

SNP→ HDL1→ TG1→ TG2→ TG3→ TG4 −2.568 1.011 0.011

rs4765127

Through cg02647265 SNP→ cg02647265→ TG2→ TG3→ TG4 0.323 0.153 0.034 0.074 0.95 0.92

rs1121980

Through HDL3 SNP→ HDL3→ TG3→ TG4 −0.547 0.249 0.028 0.08 0.96 0.93

rs10401969

Through HDL1 SNP→ HDL1→ TG1→ TG2→ TG3→ TG4 2.552 1.166 0.029 0.076 0.94 0.91

SNP→ HDL1→ HDL2→ HDL3→ TG3→ TG4 2.098 0.968 0.03

SNP→ HDL1→ HDL2→ HDL3→ HDL4→ TG4 0.801 0.407 0.049

We highlight all significant pathways with a focus only on significant SNP effects (P value < 0.05 and directionally consistent). Bonferroni significant
pathways (P value < 0.004) are bolded
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locus where the effects of SNPs on TG were mediated
through methylation. Such information can be used to
prioritize candidate genes in regions of association, inform
mechanisms of action of methylation effects, and highlight
possible genes with pleiotropic effects.
Although the examples highlighted herein demonstrate

the utility and flexibility of SEM to inform mechanistic
underpinnings of GWAS loci, our study is limited by the
small set of variables available to investigate in the com-
plex SEM. For example, only direct genotypes, methyla-
tion, HDL, and TG values were available. Lastly, it is
also possible for nominally significant associations be-
tween CpGs and TG to be mediated through HDL, but
because of model complexity and limited sample size,
we did not test this explicitly.

Conclusions
The majority of investigations into the genetic underpin-
nings of TG do not take advantage of the wealth of lon-
gitudinal data available in many large cohort studies.
Additionally, there is a dearth of comprehensive studies

that incorporate genetic, epigenetic, and correlated
phenotypic data to investigate pathways through which
genetic variants influence trait variance. To address this
important research gap, we capitalized on extant geno-
typic data at known TG-associated loci, longitudinal as-
sessments of TG and HDL, smoking exposure, and
methylation available through the GAW20 to explore
the utility and flexibility of the SEM framework for
informing mechanistic insights at GWAS loci. In future
investigations, the proposed approach can be easily ex-
tended to accommodate additional and longitudinal
omics data, ultimately assisting researchers in better
identifying the mechanist pathways through which gen-
etic variants influence trait variance.
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