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Abstract

Epigenome association studies that test a large number of methylation sites suffer from stringent multiple-testing
corrections. This study’s goals were to investigate region-based associations between DNA methylation sites and
lipid-level changes in response to the treatment with fenofibrate in the GAW20 data and to investigate whether
improvements in power could be obtained by taking into account correlations between DNA methylation at
neighboring cytosine-phosphate-guanine (CpG) sites. To this end, we applied both a recently developed block-
based data-dimension-reduction approach and a region-based variance-component (VC) linear mixed model to
GAW20 data. We compared analyses of unrelated individuals with familial data. The region-based VC approach
using unrelated (independent) individuals identified the gene LGALS9C as significantly associated with changes in
triglycerides. However, univariate tests of individual CpG sites yielded no valid statistically significant results.

Background
Lipid levels can be influenced by drug therapy or lifestyle
factors such as diet, physical activity, alcohol consump-
tion, and smoking [1]. Lipid levels are also associated with
inherited genetic variants (single-nucleotide polymor-
phisms [SNPs]), as revealed by several genome-wide asso-
ciation studies [2]. However, DNA sequence variation
explains only a small proportion of lipid-level variance [2].
Epigenetic modifications (eg, DNA methylation) alter
DNA accessibility and hence can be involved in regulating
patterns of gene expression. Through regulation of lipid
levels, epigenetic mechanisms may contribute to cardio-
vascular risk profiles [3, 4]. Irvin et al. [3] identified strong
association of 4 cytosine-phosphate-guanine (CpG) sites
within the CPT1A gene on chromosome 11 with both tri-
glycerides (TGs) and very-low-density lipoprotein C
(VLDL-C). Because their analysis examined phenotype as-
sociations at each CpG site, a substantial correction for
multiple testing was required.

This study’s goals were to investigate region-based as-
sociations between DNA methylation sites and
lipid-level changes in response to the treatment with
fenofibrate in the real data set provided by the GAW20
and to investigate whether improvements in power
could be obtained by taking into account correlation be-
tween DNA methylation at neighboring CpG sites. We
conducted 2 complementary block-based association
tests that simultaneously accommodated all CpG sites
that fell within a genomic region (block) for the purpose
of investigating whether taking into account the
correlation between DNA methylation at neighboring
CpG sites and reducing the number of tests can improve
power.
Turgeon et al. [5] have proposed “principal components

of explained variation (PCEV).” The PCEV approach
integrates, simultaneously, an optimal data-dimension-re-
duction technique with testing for association. It provides
analytical and empirical p value calculations for testing as-
sociation between a set of correlated variables (eg, methy-
lation profiles of a genomic region) and 1or more
variables of interest (eg, high-density lipoprotein [HDL]/
TG).
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We contrast PCEV with a variance components (VC)
score test method. This is a sequence kernel association
test (SKAT)-type association test that decomposes the
total variance of a phenotype (eg, HDL/TG) into the
variance explained by a block/region-methylation pro-
files and a residual variance term [6]. Specifically, the
model assumes that the phenotypic similarity between
subjects is captured by the region–methylation simila-
rity. The VC-score approach significantly reduces the
model degrees of freedom compared to standard multi-
variate regression models.

Methods
Suppose we have observed data {Y, x, C} where Y is
an n × p matrix of n subjects for which a block of p vari-
ables/phenotypes are measured (eg, methylation values
at a genomic region/gene with pCpG dinucleotides), x is
an n × 1 vector of an observed trait of interest (eg, HDL
phenotype) and C is an n × r matrix where the columns
are known confounding factors (eg, age, sex).

PCEV approach
PCEV is a dimension-reduction technique that searches
for a linear combination (a principal component) of the
columns of Y, ypcev = Y w (w is ap × 1 vector), that maxi-
mizes h2(w), the ratio of the variance in Y explained by x
to the total variance of Y, while taking into account the
confounding factors, C. This new score ypcev can then be
used as a phenotype in standard statistical models to test
for the relationship between Y and x. Searching for ypcev
is equivalent to projecting the rows of Y into w, where w
is the most relevant direction in p-dimension space to x.
A linear relationship between Y and x can be tested
by H01 : corr(ypcev, x) = 0. This test requires the use of the
data twice, and therefore a naïve approach for p value
calculation will suffer from Type I error inflation.
However, the null H01 is equivalent to testing for
H02 : h

2(wpcev) = 0 which uses the data only once.
Turgeon et al. [5] derived an analytic test for the null
hypothesis H02, which was shown to yield the proper
Type I error rate.

VC-score approach
In a reverse model where x (eg, HDL) is modeled as the
response variable and Y as a design matrix of p predictors,
the VC model links x to Y using a linear mixed-effects re-
gression model in which Y has an effect on the variance of
x instead of on its mean [6]. This approach was developed
to test association between a set of rare variants and a
phenotype of interest. However, the test can be adapted
easily to handle different types of design matrices, such as
methylation from a genomic region of interest. This
method can be extended to take into account population
and family structures. The family-based VC-score

approach is a linear mixed-effects model in which a
second random effect for genetic relationships (ie, kinship)
is added [7].

Phenotypic, methylation, and covariate data
Circulating blood lipids, HDL, TGs, and the methylation
profiles were measured at baseline and following 3 weeks
of daily treatment with 160 mg of micronized fenofibrate
[2]. For this study, we investigated HDL and TG changes
among 714 participants for whom pretreatment methy-
lation data were available. Because the PCEV approach
has only been implemented for use with independent
subjects, analyses using this method were conducted
using 242 unrelated individuals. The selection of the
maximum set of unrelated individuals from each pedi-
gree was done using a greedy algorithm that used the
kinship matrix to sequentially remove related individuals
[8]. Log-transformations were performed for TG, as this
variable was not normally distributed.
T-cell pre- and posttreatment DNA-methylation at

463,995CpG sites were already normalized using
ComBat [3]. These CpG sites were allocated to 22,319
genes. We also included sites located 20 kb up- and
downstream of the gene region. Only the CpG sites with
gene annotations were evaluated in the analyses; conse-
quently, we analyzed 401,326 CpG sites. Because PCEV
works when the block and sample sizes are comparable
[5], we divided the largest gene blocks to obtain 22,488
gene regions with no more than 130 CpG sites per
block.
We focused on the pretreatment methylation levels to

evaluate the effect of individual CpG sites and genes on
explaining the observed heterogeneity in response to
treatment. To capture unwanted variability in methylation
profiles, which could result from variation in cell purity or
batch effects, we constructed principal components of
genome-wide methylation levels using 2000 randomly
sampled probes from all autosomes. The association ana-
lyses between pretreatment methylation probes and blood
lipid changes were adjusted for age, sex, study center,
smoking status, diagnosed metabolic syndrome status, the
fast time on the pre- and posttreatment visits, and the top
4 methylation-derived principal components (PCs).

Results
Bonferroni thresholds for significance at a 10%
family-wise error rate were established using 401,326
univariate tests and 22,488 CpGset tests. No univariate
tests for TG changes passed this threshold. The
family-based VC-score approach identified 2 genes
(RNMT andMIR130B) as significantly associated with
HDL changes. The VC-score approach using unrelated
subjects identified the gene LGALS9C as significantly as-
sociated with TG changes. Table 1 lists the 5 most
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significant genes with association to lipid changes identi-
fied by univariate, PCEV and VC-score approaches.
Among the top 5 genes, both region-based approaches
identified NUDCD3 for its relationship with HDL
changes among independent participants. There is no
overlap among the top 5 genes for TG changes identified
by the 3 approaches.
Figure 1 shows quantile–quantile (Q-Q) plots for the

gene-based p values and the individual CpG-based p

values for the HDL changes and TG changes, using data
from the 242 unrelated individuals. Under each analysis,
adjustments with and without the 4 methylation PCs
were compared, revealing that inclusion of these PCs
was important in controlling for unknown confounding.
Without this extra adjustment, the distribution of p
values was very biased away from what would be ex-
pected under the null. Figure 2 contrasts the results ob-
tained using the independent participants and the ones

Fig. 1 Q-Q plots for gene-based p values obtained from VC-score (top), PCEV (middle), and the individual CpG-based p values (bottom) for the
HDL (left) and TG (right) changes, using the 242 independent participantsThe results without the extra adjustment of 4 methylation principal
components are also shown for contrast.

Fig. 2 The Q-Q plots for the gene-based (VC-score [top]) and individual (bottom) CpG-based p values comparing analysis of just the independent
participants with families. All analyses were adjusted for the top 4 methylation-derived PCs
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using the families. Inclusion of all family participants
can increase power, but also inflated the p values com-
pared to the null.

Discussion
In this study, we investigated associations between DNA
methylation and lipid-level changes in response to feno-
fibrate treatment in the GAW20 real data set. The smal-
lest p value found by both the VC-score test for TG
differences and the single-CpG association test was at
gene LGALS9C. However, as a result of multiple-testing
power-loss issues, no single-CpG test passed a
Bonferroni-corrected threshold. Simulation studies are
necessary for more rigorous power assessments compar-
ing region-based and univariate methods. Furthermore,
we did not replicate the results of Irvin et al. [3] for
baseline lipids, although this is not surprising as we
analyzed lipid-level changes. We focused on linear rela-
tionships; however, nonlinear association methods may
be more favorable/powerful when the primary interest is
lipid-level changes.
In all analyses, we adjusted for available/known

confounders and for unknown confounders using 4 PCs
calculated based on 2000 CpG probes selected randomly
from available DNA methylation on all chromosomes. We
also contrasted this with an analysis using PCs calculated
from all CpG sites, and found little difference in the re-
sults (not shown). The adjustment resulting from the PCs
improved the validity of VC-score test results; however,
(unusual) deviation of the PCEV test statistic from the null
distribution was also indicated. This might be a conse-
quence of the nonrobustness of PCEV to violation of nor-
mality assumption or the constant variance assumption of
model residuals (errors). Even after normalization, methy-
lation proportions have variances that are small when
means are near 0 and 1. This heteroscedasticity might lead
to a loss of power [9]. Thus, a transformation such as the
logit may help in obtaining test statistics with valid null
distributions.
We considered 2 ways to accommodate the related-

ness among the participants: to restrict the analysis to
unrelated individuals or to use a linear mixed model that
takes family structure into account. In contrast to the
well-behaved p value distribution for the analysis of un-
related subjects, the family-based VC-score test showed
inflation in the Q-Q plots. Hence, the significant results
for the 2 genes RNMT and MIR130B may be question-
able. Almeida et al. [10] found that heritability of
pretreatment DNA methylation was much higher than
expected. Our results agree that pedigree-based kinship
corrections are insufficient to correct for familial
correlations in DNA methylation, and that additional
corrections must be considered.

Other region-based association methods may be worth
exploring in the future, such as the global analysis of
methylation profiles (GAMP) [11] in which the density
of methylation values in a region is approximated by
B-splines and then the spline coefficients for each indi-
vidual are used as covariates in association tests. Other
strategies to accommodate the family structure in the
region-based association tests include MF-KM (multi-
variate family data using kernel machine regression)
[12], a linear mixed model built upon kernel machine re-
gression, and mFARVAT (multivariate family-based rare
variant association tool) [13], a quasi-likelihood-based-
score test approach.

Conclusions
The region-based VC approach using unrelated individuals
identified the gene LGALS9C as significantly associated
with changes in triglycerides. However, univariate tests of
individual CpG sites yielded no valid statistically significant
results. After correctly accounting for the unknown con-
founding and subject relatedness, region-based methods
show an improvement in power to detect associated genes
as compared to single-marker methods.
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