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Abstract
Genome-wide association studies usually involve several hundred thousand of single-nucleotide
polymorphisms (SNPs). Conventional approaches face challenges when there are enormous
number of SNPs but a relatively small number of samples and, in some cases, are not feasible. We
introduce here an iterative Bayesian variable selection method that provides a unique tool for
association studies with a large number of SNPs (p) but a relatively small sample size (n). We applied
this method to the simulated case-control sample provided by the Genetic Analysis Workshop 15
and compared its performance with stepwise variable selection method. We demonstrated that the
results of iterative Bayesian variable selection applied to when p » n are as comparable as those of
stepwise variable selection implemented to when n » p. When n > p, the iterative Bayesian variable
selection performs better than stepwise variable selection does.

Background
Advances in genotyping technology have made genome-
wide association studies feasible. Usually, a large number
of single-nucleotide polymorphisms (SNPs) are engaged
in a genome-wide association study. Many statistical
approaches have been used to analyze the genome-wide
association data. Conventional statistical approaches,
however, face many challenges for analyzing the data in
which a relatively small number of samples that are real-
istic to recruit for a research study contain hundreds of
thousands of markers densely spaced over the genome.
Various statistical approaches that can be utilized when p
» n have been applied to reduce dimension. West et al. [1]
utilized singular value decomposition in the design matri-

ces of Bayesian regression analysis with binary responses.
Sha et al. [2] applied stochastic search variable selection,
which is a Bayesian variable selection (BVS) approach
proposed by George and McCulloch [3], to identify
molecular signatures of disease stage.

Although shown to be very promising, BVS uses quite
long iterations and take a long time to search for signifi-
cant SNPs. In order to overcome these problems, we pro-
pose an iterative Bayesian variable selection (IBVS)
method, which repeatedly uses the BVS with relatively
small iterations until a proper number of SNPs are
selected. We applied the IBVS to randomly selected sub-
samples of the simulated rheumatoid arthritis (RA) data
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provided by the Genetic Analysis Workshop 15 (GAW15)
Problem 3 to find subsets of SNPs that are associated with
RA status. The results obtained by using IBVS were com-
pared to those obtained from stepwise variable selection
(SVS) to evaluate the validity and performance of IBVS.

Methods
Bayesian variable selection with probit model
The binary probit model is incorporated to implement
BVS method. Let us assume that (y, X) indicates the
observed data, with yn × 1 a dichotomous categorical out-
come vector coded as 1 or 0 representing for RA affected
or RA unaffected, respectively, and Xn × p the predictor
matrix. Let z be an n × 1 vector of latent variables, while
each zi, associated with a categorical outcome, yi, is
described by a linear regression model:

zi = Xiβ + εi, ε ~ N(0, σ2), i = 1,..., n.

The relationship between zi and yi is defined by yi = 1 if zi
> 0 and yi = 0 otherwise. The likelihood function of the
model defined in Eq. (1) may be written as f(z|β, σ):

f(z|β, σ) = Nn(Xβ, σ2I).

The variable selection problem arises from the fact that it
would be preferable to exclude some unknown subset of
the predictors that have negligible influence on the out-
come. Thus, statistical models for the variable selection
problem can be represented by a selection vector, which is
a set of binary indicator variables γ = (γ1,..., γp), where γj =
1 or 0 corresponds to inclusion or exclusion of predictor j
in the model, respectively. The prior distribution of the
model indicator variables, π(γ), is chosen to reflect prior
belief in whether particular SNPs are associated with RA
status in our case. A reasonable choice of the prior infor-
mation might be to have the γj (j = 1,..., p) independent
with probability π(γj = 1) = 1-π(γj = 0) = pj, thus

π(γ) = ∏ pj
γj (1-pj)1-γj.

The residual variance σ2 for the γth model is modeled as a
realization from an inverse gamma prior:

π(σ2|γ) = IG(ν/2, νλγ)

which is equivalent to νλγ ~ χν2. Because the value of selec-
tion vector, γ, is of interest and is unknown, the uncer-
tainty underlying variable selection can be modeled by a
mixture prior:

π(β, σ, γ) = π(β|σ, γ) π(σ|γ) π(γ).

The posterior distribution of (β, σ, γ) can be obtained
from the product of the likelihood function of the model
in Eq. (2) and the prior defined in Eq. (5):

π(β, σ, γ|z) = f(z|β, σ) π(β|σ, γ) π(σ|γ) π(γ).

Therefore, integrating out β and σ from Eq. (6) yields the
posterior distribution of the selection vector γ:

π(γ|z) ≈ g(γ) ≡ π(γ) ∫ f(z|β, σ) π(β|σ, γ) π(σ|γ) π(γ) dβdσ.

Based on this setting, Metropolis algorithm with Gibbs
sampling was incorporated to sample (γ, z) as follows: 1)
Metropolis step: π(γ|z) ≈ g(γ) with acceptance probability
{g(γnew)/g(γold), 1}; 2) (z|γ, X) has a truncated normal dis-
tribution.

In order to update each transition from γold to γnew, the
Metropolis algorithm uses deletion, addition, and swap-
ping moves discussed by Brown et al. [4]. Details of the
prior information, the posterior distribution, and the
updating procedure can be found in George and McCul-
loch [5] and Sha et al. [2].

Iterative Bayesian variable selection
As mentioned, BVS uses long iterations and take a long
time for the Metropolis algorithm to find suitable subset
of SNPs. In the worst case, BVS might be unable to provide
a promising subset. In order to overcome these problems,
we propose to use BVS iteratively with a relatively small
number of iterations, which is termed IBVS, to increase
the speed of search for promising subsets of SNPs. There
are two basic ideas behind IBVS. First, if γj is not significant
at the early stage of iteration when long iteration is incor-
porated in BVS, then the jth marker is excluded in the final
model. Second, the model that has high probability is
more likely to appear at the early stage of iteration. From
these facts, we can use BVS iteratively with relatively small
number of iterations to increase the speed of searching for
promising subsets of markers. This IBVS can be imple-
mented by the following steps: 1) Start with BVS with full
model, i.e., the model having all SNPs. 2) Choose a model
for next iteration of BVS, e.g., the model that has highest
posterior probability. 3) Repeat Step 1 and 2 with the
model chosen in Step 2 until a certain number of SNPs
remain in the model.

Materials
There were 100 replicates in GAW15 Problem 3 data sets.
Each replicate consisted of 1500 nuclear families (two
parents and two offspring) that had an affected sibling
pair (ASP) and 2000 unrelated control subjects that had
no first-degree relatives with RA. Three marker sets were
provided: 1) a set of 730 microsatellite markers fairly
evenly spaced on chromosomes with an average inter-
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marker distance of about 5 cM; 2) a set of 9187 SNPs dis-
tributed on the genome to mimic a 10 K SNP chip set; 3)
a very dense map of 17,820 SNPs on chromosome 6. We
utilized the second marker set for our analysis. According
to the answer distributed by GAW15, there are three loci
(DR, C, and D) on chromosome 6 that increase the risk of
RA. Loci DR and C are located between SNP6_153 and
SNP6_154, and are in complete linkage equilibrium.
Locus C increases RA risk only in women. Locus D is
located between SNP6_161 and SNP6_162, and has a rare
minor allele frequency of 0.0083. We focused our analysis
on the 674 SNPs on chromosome 6 to evaluate the IBVS
method.

We first constructed three case-control panels for each of
the 100 replicates. The first panel included both males
and females. One affected offspring was randomly
selected from each of the 1500 families that had an ASP.
These 1500 unrelated affected subjects were used as cases.
The 2000 unrelated control subjects were used as controls.
In addition, because locus C increases RA risk only in
women, we also constructed a female case-control panel
and a male case-control panel. To maximize the number
of female cases, we randomly selected one affected female
offspring from each of the ASP families that had at least
one female offspring. The female case-control panel con-
sisted of ~1400 unrelated affected female offspring
selected from the ASP families and ~1000 female controls.
The male case-control panel was constructed similarly. It
consisted of ~680 cases and ~1000 controls. Therefore, a
total of three case-control panels (total, female, and male,
respectively), each having 100 replicates, were con-
structed. This data set was named DS1.

Second, in order to evaluate the performance of IBVS
when p » n, we constructed a subset case-control panel
from each of the case-control panels in DS1 by randomly
selecting 50 cases and 50 controls. The same 674 SNPs

were kept in the panel. This data set was called DS2 (n =
100, p = 674).

Finally, in order to compare the performance between
IBVS and traditional SVS directly, we selected a subset of
50 SNPs located between SNP6_128 and SNP6_177 from
DS2. This dataset was named DS3 (n = 100, p = 50).

As a comparison, we also carried out the association anal-
ysis using BVS and SVS, which was implemented in the
Proc Logistic procedure in SAS. We summarized all results
obtained from IBVS, BVS, and SVS by calculating power
for each SNP indicator, γj, as follows:

where I is the indicator function satisfying I(γij = 1) = 1 if
γij = 1 and I(γij = 1) = 0 otherwise; and n is the total number
of replicates. Like other iterative methods, e.g., Newton
method, there can be many stopping rules that can be
applied in Step 3 in IBVS. We used the predetermined
number of SNPs (10) based on empirical experience to
stop the IBVS algorithm.

Results and discussion
We examined the performance of IBVS when p » n by
implementing the IBVS in DS2 and summarized the
results in Figure 1. We found a peak corresponding to the
genomic region where loci DR and C are located for all
three panels (total, female, and male), demonstrating that
IBVS properly identified two trait loci (DR and C). Figure
1 also shows that IBVS was unable to identify locus D.
This is, however, not completely unexpected due to the
fact that the minor allele frequency in locus D is very low
(0.0083), and we have more predictors (674 SNPs) than
samples (100).
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IBVS in DS2Figure 1
IBVS in DS2. All three panels in DS2 have 100 samples (50 cases and 50 controls) and 674 SNPs.
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Figure 2 shows the results when applying SVS to DS1. For
all three panels, SVS successfully identified three trait loci
(DR, C, and D) with two high peaks. One peak corre-
sponded to the region between SNP6_153 and
SNP6_154, where loci DR and C are located, and the other
corresponded to SNP6_162, where locus D is located.
However, there were a few other SNPs with relatively high
powers around SNP6_145, but those were apparently
false positives.

Although we illustrated the validity of IBVS by comparing
the results obtained from SVS, it was difficult to directly
compare two search methods given that they were applied
to two different data sets (100 samples of DS1 and ~3500
samples of DS2). In order to compare the performance
between IBVS and SVS directly, we applied both methods
to DS3, which focused on the SNPs between SNP6_128
and SNP6_177 (n = 100, p = 50). The results obtained
from IBVS and SVS are shown in Figure 3 and Figure 4,
respectively. Figure 3 shows that, for each of the three

case-control panels, there are two separated peaks: one
relatively high peak at SNP6_153 and SNP6_154 and the
other at SNP6_162. This demonstrated that IBVS success-
fully identified three trait loci (DR, C, and D) including
the one with a rare allele frequency. However, the results
from SVS had only one peak corresponding to loci DR and
C for all the three case-control panels (Figure 4). SVS was
unable to identify locus D, which has a very small minor
allele frequency. Therefore, we concluded that the per-
formance of IBVS is better than that of SVS when n > p.

We also applied BVS to DS2 to compare the performance
between IBVS and BVS. The results showed that the final
model provided by BVS with 10,000 iterations and 5000
burn-in periods for each replicate contained over 300
SNPs, which demonstrated that BVS tends to yield more
false positives. Therefore, IBVS improved the performance
in variable selection as compared to BVS. In addition, the
overall run time for BVS was about five times slower than
that for IBVS.

IBVS in DS3Figure 3
IBVS in DS3. All three panels in DS3 have 100 samples (50 cases and 50 controls) and 50 SNPs.
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SVS in DS1Figure 2
SVS in DS1. Total panel has 1500 cases and 2000 controls; female panel, ~1400 cases and ~1000 controls; and male panel, 
~680 cases and ~1000 controls. All panels have 674 SNPs.
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With the goal of investigating sample size effect in IBVS,
we applied IBVS to a data set, in which each case-control
panel had five cases and five controls randomly selected
from each case-control panel in DS1 and 50 SNPs
between SNP6_128 and SNP6_177 (n = 10, p = 50). We
found that IBVS identified the same two loci (DR and C),
as when applied to DS2 (Figure 1), but was unable to
identify Locus D, although the power was lower than that
in Figure 1.

Another interesting question is how SNP density affects
the performance of IBVS. We applied IBVS to another data
set in which each case-control panel again consists of ten
cases and controls (five each) randomly selected from
each of case-control panels in DS1, but the 50 SNPs were
selected in a wide genomic region (between SNP6_104
and SNP6_203) by selecting every other SNP. With this
data set, we were able to identify SNP6_154 with a slightly
higher power as compared to that with a denser SNP map.
The likely reason for this is that the between-variable cor-
relation included in the model has an effect on the per-
formance of the method. When the SNPs are relatively
loosely distributed, the LD (between-variable correlation)
among them is lower and IBVS performs better. However,
this does not mean we will be able to identify a disease
mutation with very loosely distributed SNPs. The success
of a genome-wide association study still relies on whether
a marker in high LD with the disease mutation is included
in the study set of SNPs.

Conclusion
We applied the IBVS method to the case-control data con-
structed from the simulated RA data sets of GAW15. When
the number of sample size (100 observations) is larger
than the number of predictors (50 SNPs), i.e., n > p, we
were able to identify association with RA status on chro-
mosome 6 at the location where loci DR and C are located
by both IBVS and SVS. However, the association between

RA status and locus D was identified only by IBVS. With a
small sample size of 100 and large number of predictors
(674 SNPs), i.e., n » p, IBVS can still identify association
with RA status on chromosome 6 at the location of Loci
DR and C. We concluded that IBVS method is promising
for identifying genetic determinants in genome-wide
association studies when the number of genetic markers is
much larger than the number of samples.
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1

130 140 150 160 170
0

0.2

0.4

0.6

0.8
Total
Female
Male

SNP

P
ow

er
Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://ftp.stat.duke.edu/WorkingPapers/00-15.html
http://ftp.stat.duke.edu/WorkingPapers/00-15.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15339306

	Abstract
	Background
	Methods
	Bayesian variable selection with probit model
	Iterative Bayesian variable selection
	Materials

	Results and discussion
	Conclusion
	Competing interests
	Acknowledgements
	Acknowledgements

	References

