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Abstract

Rheumatoid arthritis is a complex disease that appears to involve multiple genetic and
environmental factors. Using the Genetic Analysis Workshop |5 simulated rheumatoid arthritis
data and the structural equation modeling framework, we tested hypothesized "causal" rheumatoid
arthritis model(s) by employing a novel latent gene construct approach that models individual genes
as latent variables defined by multiple dense and non-dense single-nucleotide polymorphisms
(SNPs). Our approach produced valid latent gene constructs, particularly with dense SNPs, which
when coupled with other factors involved in rheumatoid arthritis, were able to generate good
fitting models by certain goodness of fit indices. We observed that Gene F, C, DR, sex and smoking
were significant predictors of rheumatoid arthritis but Genes A and E were not, which was
generally, but not entirely, consistent with how the data were simulated. Our approach holds
promise in unravelling complex diseases and improves upon current "one SNP (haplotype)-at-a-
time" regression approaches by decreasing the number of statistical tests while minimizing
problems with multicolinearity and haplotype estimation algorithm error. Furthermore, when
genes are modeled as latent constructs simultaneously with other key cofactors, the approach
provides enhanced control of confounding that should lead to less biased effect estimates among
genes as well as between gene(s) and the complex disease. However, further study is needed to
quantify bias, evaluate fit index disparity, and resolve multiplicative latent gene interactions.
Moreover, because some a priori biological information is needed to form an initial substantive
model, our approach may be most appropriate for candidate gene SNP panel applications.
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Background

Advances in the technology used to interrogate variation
in the human genome (e.g., 10 K, 500 K and other single-
nucleotide polymorphism (SNP) chip panels) are rapidly
generating vast amounts of genotyping data. However, to
maximize the use of this information in unravelling the
etiology of complex diseases such as rheumatoid arthritis
(RA), statistical approaches are needed that simultane-
ously model multiple genes and multiple SNPs within a
gene in a hierarchical manner that reflects their underly-
ing role in a biological system(s). We used the Genetic
Analysis Workshop 15 (GAW15) simulated RA data and
the structural equation modeling (SEM) statistical frame-
work, which solves systems of linear and non-linear equa-
tions, to test the overall fit of hypothesized "causal" RA
model(s) formally by employing a novel latent gene
approach that models individual genes as latent (not
directly measurable) variables defined by multiple SNPs.

Methods

Statistical methods and notation in SEM

The statistical theory involved in SEM is extensive so we
only present the general concepts and notation needed to
follow this work. SEM comprises two general sub-models:
1) a measurement model that develops the relationships
between the observed variables (indicators) and the latent
(unobserved) variables; and, 2) a structural model that
develops the relationships between the latent variables.
The general form of the measurement model is as follows

[1]:
x=A &+
y=Ayn +g,
where

x = q x 1 is a vector of observed indicators in the exoge-
nous latent variables (&);

y = p x 1 is a vector of observed indicators in the endog-
enous latent variables (n);

& =n x 1 is a vector of latent exogenous (independent)
latent random variables;

n =m x 1 is a vector of latent endogenous (dependent)
latent random variables;

8 = q x 1 is a vector of measurement errors for x;
€ = p x 1 is a vector measurement errors for y;

A, = q = n is a matrix of coefficients relating x to &; and,
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Ay =p x nis a matrix of coefficients relating y to n.

The general form of the structural model is as follows [1]:

n=Bn+I&+¢
where

B = m x m is a matrix of path coefficients for latent endog-
enous variables (n);

I' = m x n is a matrix of path coefficients for latent exoge-
nous variables (&); and,

€ =m x 1 is a vector that represents the errors or distur-
bances in n.

To simplify notation, we refer to A,; and A; values collec-
tively as A; values or measurement model "loadings" and
B;and y; values as B values or structural model "path coef-
ficients".

In SEM, the null hypothesis assumes that if the conceptu-
alized model were correct, the population covariance
matrix of the observed variables, ¥, would be exactly
reproduced by the covariance matrix determined by the
model parameters, (0) (Ho: X = £(0)). Thus, covariance-
based SEM aims to test "causal" model theory by mini-
mizing the difference between the sample covariance
matrix (S) and the covariance matrix defined by the
model parameters (X(0)) using a fitting function. Maxi-
mum likelihood (ML) estimation fitting functions (F,,;)
such as the following, where p is the number of observed
variables, are often used for global optimization but
require the rigid assumptions of multivariate normality
and independence of observations [1]:

Fy; = log|Z(6)] + tr[S 2(6)'] - log|S] - (p).
Thus, for models with non-normal variables, a weighted
least squares (WLS) fitting function (F ) should be used
to obtain unbiased estimates, standard errors and model
tests [1,2]:
Fyis=[p-o(0)]' W [p-a(6)],
where:

W-1is the weight matrix for the residuals;

p is the vector of elements containing polychoric, tetra-
choric, and polyserial correlations;

o(0) is corresponding vector from same-order implied

matrix X(0); and,
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0 is the t x 1 vector of free parameters.

Variations to these fitting functions have been devised,
including the robust weighted least-squares estimator
(WLSMYV), which allows for estimation of binary and cat-
egorical dependent variables [2,3], and a ML estimator
robust to non-normality (MLF) [4].

Data preparation and modeling procedures

First, we randomly selected a training (Replicate 64) and
avalidation (Replicate 46) data set from the 100 replicates
simulated. In an attempt to satisfy the requirement for
independence of observations, the data files were recon-
structed by randomly selecting one case from each
affected sib pair (n; = 1500) and including all unrelated
controls (n, = 2000). The SNPs were coded assuming an
additive genetic model (e.g., 1/1 = 0; 1/2 = 1; 2/2 = 2
where: 1 = wild type allele; 2 = variant allele). Gender and
smoking were dichotomous (0 = males; 1 = females; non-
smokers = 0; smokers = 1). Because IgM and anti-CCP
(anti-cyclic citrinullated protein) values were only pro-
vided for cases, we arbitrarily set the values of these varia-
bles to zero for controls. Using the location of simulated
risk loci provided in the answer key, we selected geno-
typed SNPs from the 10 K and chromosome 6 dense SNP
chip panels upstream, downstream, and directly at (when
available) the known location of each locus to build latent
constructs for each gene. Because we did not explicitly
know which SNPs were representative of each simulated
locus, we also examined the linkage disequilibrium (LD)
structure (Haploview v3.2) between the selected SNPs and
performed factor analysis (FA) using SAS v8.2 (SAS Insti-
tute, Inc.) to help devise viable gene constructs. FA was
performed independent of disease status (with only the
SNP data) and was used to generate eigenvalues, inspect
scree plots and factor patterns, and determine the propor-
tion of average variance explained (AVE). AVE is an indi-
cator of the communality or validity of the construct [5].
We also inspected LD and Pearson correlations to help
confirm initial SNP selections, particularly when FA sug-
gested the construct was less than valid (AVE < 0.50) [5]
or more than one factor was emerging.

We then built the full model(s) by constructing measure-
ment and structural model equations using the "causal"
RA model information provided in the answer key. How-
ever, to obtain scale determinancy and model identifica-
tion, one of the loadings (e.g., the SNP with the highest
loading from the FA or, ideally, the SNP with the largest
biological impact on gene function) must to be fixed to
1.0. When we were able to locate a SNP in the exact phys-
ical location of the simulated locus, we fixed that SNP's
loading to 1.0. When the simulated locus fell between two
SNPs, we arbitrarily selected one of them. We analyzed the
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models using the WLSMV estimator in Mplus v4.1 (Stat-
Model, Inc.) and evaluated the overall fit.

The chi-square test evaluates whether the specified model
is significantly different from the alternative model, which
assumes the data are from a multivariate normal distribu-
tion with an unconstrained covariance matrix. However, it
is affected by departures from normality and sample size
(with substantially more power to falsely reject an accept-
able model with large samples). Therefore, when categor-
ical or non-normal dependent variables are modeled, a
modified chi-square test [6] or other fit index robust to
non-normality is needed. Although a plethora of alterna-
tive goodness-of-fit indices exists, we chose to evaluate
only the following three. The root mean squared error of
approximation (RMSEA) is an absolute fit index which
represents dispersal of data to model discrepancy across
degrees of freedom; and, a RMSEA value of less than or
equal to 0.05 is believed to represent the boundary of
acceptable fit [7]. The Comparative Fit Index (CFI) is an
incremental fit index that it is independent of sample size
and values exceeding 0.96 indicate acceptable model fit
[8]. The weighted root mean square residual (WRMR) is a
relatively new fit index that is believed to be better suited
to categorical data. WRMR values less than 1.0 depict a
good fitting model [7]. We also evaluated the coefficients
and their standard errors.

Results

Even though we did not have explicit knowledge of which
SNPs corresponded to each of the simulated genes, we
were generally able to construct viable latent variables by
using SNPs upstream, downstream, or directly at (where
available) the physical location of each locus. Using
eigenvalue (>1.0) and proportion of variance explained
(AVE > 0.50) criteria [5], the latent constructs we devised
for Gene C (dSNP6_ 3432-3439; 3.82; 0.52), Gene D
(dSNP6_3912-3920: 3.31; 0.61), Gene F (SNP11_388-
391:1.61;0.53), Gene G (SNP9_183-187:2.12; 0.56) and
Gene H (SNP9_189-195: 2.69; 0.59) were valid but those
for Gene A (SNP16_29-33: 1.51; 0.40) and Gene E
(SNP18_268-271: 1.13; 0.38) were marginal at best.
Because Locus B was located at the end of chromosome 8
and the closest SNPs genotyped (SNP8_440-442) were all
upstream and not representative of the simulated locus,
we decided not to evaluate Gene B.

We analyzed a "full" model with all genes (Gene A, C, D,
E, and F), gender and smoking as covariates, and RA as a
dichotomous outcome (Fig. 1) and obtained a good fit-
ting model by CFI (0.96) but not RMSEA (0.12) or WRMR
(6.53) fit index standards. To obtain convergence, we had
to remove two SNPs (dSNP6_3918; dSNP6_3919) ini-
tially used in constructing latent variable Gene D. We
could not determine the exact source of this problem but
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Evaluation of the GAW|5 simulated rheumatoidarthritis (RA) model. Measurement model loadings depict relation-
ships between observed variables (rectangles) and latent variables (ovals) and structural model path coefficients depict relation-
ships between latent variables. Corresponding standard errors in parentheses are above single-headed arrows. Correlations
are above double-headed arrows. Red arrows indicate the simulated locus location.*p-value < 0.05.

speculate it may have been due to some type of linear
dependency between these SNPs because of the "weak"
LD simulated between these loci. Nevertheless, removing
the two SNPs did not alter the validity of Gene D (eigen-
value = 3.21; AVE = 0.59). The specific measurement
model loadings and path coefficients for the "full" model
are shown in Figure 1. The largest significant path coeffi-
cient between a gene construct and RA was observed with
Gene C (B =-0.609 + standard error of § = 0.020; p < 0.05)
and the inverse nature of this association may reflect the
increased risk simulated with the wild-type "C" allele.
Gene C was also highly correlated with DR (p = 0.895 +
0.031), which was expected given that Locus C was simu-
lated to be in complete LD with DR (D' = 1.0). We also
found a strong positive path coefficient between Gene F
and RA (B =0.274 + 0.033; p < 0.05), which was expected
because Locus F was simulated to confer risk from IgM on
RA. However, the path coefficient between Gene D, which
was simulated to be in "weak" LD with DR, and RA (B =

0.024 + 0.027) was trivial in our model. We hypothesize
the very low "D" risk allele frequency simulated contrib-
uted to this discrepancy. In addition, although the effects
of DR were simulated to be controlled by Locus A, the
path between Gene A and DR was negligible (§ = 0.001 *
0.022). This, however, may have been driven by our ina-
bility to devise a good construct for Locus A. When we
added IgM (and/or anti-CCP), we did not obtain conver-
gence, which was likely because of the skewed, edge effect
distribution from assigning 0 values to controls.

We also evaluated RA severity as an ordinal outcome (1,
2, 3, 4, or 5) using all of the variables in the "full" model
described above and Gene G and Gene H, which were
simulated to induce RA severity. This was not a good fit-
ting model by any index evaluated (CFI = 0.82; RMSEA =
0.19; WRMR = 10.73). Although the loadings and path
coefficients of the Gene A, B, C, D, and F constructs were
similar, the path coefficients between Gene G (§ = -0.010
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+0.031) and Gene H (B =-0.005 + 0.130) and RA severity
were surprisingly low, with high standard errors. Using
just one of the RA severity genes (Gene G or H) did not
materially alter the fit indices but removing both Gene G
and H resulted in a model with a much better fit that was
similar to that found with RA as a dichotomous outcome
(CFI = 0.96; RMSEA = 0.12; WRMR = 6.53). These results
suggest neither Gene G nor H (as described by our SNP
selection) affected RA severity, which appears inconsistent
with how the data were simulated.

We also examined subsets of the "full" model. In a "sim-
pler" model including only latent gene constructs C and F,
DR, sex and smoking (i.e., factors with significant paths
on RA in the "full" model), the fit indices were poorer
(CFI = 0.95; RMSEA = 0.25; WRMR = 12.02) and the path
coefficients between Gene C and RA (B = 0.656 + 0.015)
and between Gene F ( = 0.324 + 0.039) and RA were
inflated by 7.71% and 18.25%, respectively, compared to
the "full" model. The measurement model loadings for
the Gene C and Gene F constructs, however, were not very
sensitive to removal of the other gene constructs. The
majority of other simpler models also resulted in poorer
model fit and inflated path coefficients compared to the
"full" model except for one that included only Gene C,
Gene F, DR, sex, smoking and their paths on RA, which
resulted in a good fitting model by CFI (0.96) and RMSEA
(0.05) standards as well as a better fit by WRMR standards
(2.45). We surmised the improvement occurred because
the genes removed were not adding substantive informa-
tion (Gene A, D, E) and because modeling Gene C and DR
together made it difficult to define parameters representa-
tive of the data due to the complete LD (multi-allelic D' =
1.0) and complete linkage (recombination fraction = 0)
simulated between locus C and DR. However, when Gene
C was used in lieu of DR in a model also containing Gene
F, sex, smoking, and their paths on DR, the model did not
fit as well (CFI = 0.95; RMSEA = 0.27; WRMR = 13.94),
suggesting DR was a better predictor of RA than Gene C.

We examined models with multiplicative latent variable
gene interactions including a model with Gene A, DR,
Gene A x DR and RA but the overall fit was very poor and
the loadings and coefficients were very unstable. Other
interaction models performed similarly.

Finally, we evaluated the "full" model depicted in Figure
1 using another randomly selected replicate (46) to serve
as a pseudo model validation. The validation data set
results were similar to the training data set; however, there
was a little variation in the overall model fit indices and
parameter estimates. The RMSEA (0.13) and WRMR
(6.70) indices were similar but the CFI (0.92) was slightly
lower in the validation data set. The most notable change
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in path coefficients was between Gene C and RA, which
was slightly larger (f =-0.723 + 0.019; p £ 0.05).

Discussion

Although we only had knowledge of the physical loca-
tions of the simulated loci and not biologically plausible
SNP sets, we obtained valid latent gene constructs using
dense SNPs, which appeared to perform well in full mod-
els (e.g., Gene C's loadings in Figure 1 are all large with
small standard errors). The results using non-dense SNPs
were mixed. For example, Gene A had poor validity by
AVE standards [5] and its indicators had low loadings
with large standard errors but the non-dense SNPs of
Gene F all had large loadings with small standard errors
and produced a valid construct.

When using SEM to evaluate the simulated RA "causal"
model(s), we observed several models that had acceptable
fit according to CFI and/or RMSEA but not WRMR criteria.
CFI has been found to perform better than RMSEA, with a
CFI value close to 0.96 providing acceptable rejection
rates across models including those with binary outcomes
such as RA when the sample size is >250 [9]. The "full"
model depicted in Figure 1 and a "simpler" model with a
subset of genes in the "full" model were evaluated using
3500 subjects and found to have a CFI of 0.96, which sup-
ports the conclusion that these models had good fit.
Results from these models indicate that Gene F, C, DR,
sex, and smoking were significant predictors of RA but
Gene A and E were not, which is generally, but not totally,
consistent with how the data were generated. However,
because the power to detect misspecified loadings may be
greater with the WRMR index [9], the measurement
model loadings in the "full" and "simpler" models may be
somewhat inaccurate. The inconsistency in model fit
among these indices appears to be a general problem in
SEM, which warrants further study using simulated multi-
variate SNP data over a range of LD.

Conclusion

We conclude that our latent gene approach holds promise
in unravelling complex diseases such as RA and improves
upon current "one-SNP(haplotype)-at-a-time" regression
approaches by decreasing the number of statistical tests
while minimizing problems with multi-colinearity and
haplotype estimation algorithm error. Furthermore, when
genes are modeled as latent constructs simultaneously
with other key cofactors, the approach provides for
enhanced control of confounding that should lead to less
biased effect estimates among genes as well as between
gene(s) and the complex disease. However, further study
is needed to quantify bias, evaluate fit index disparity and
resolve multiplicative latent gene interactions. Because
some a priori knowledge is needed, our approach may be
best for candidate gene SNP panel data.
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