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Abstract
Large-scale genome-wide association studies are increasingly common, due in large part to recent
advances in genotyping technology. Despite a dramatic drop in genotyping costs, it is still too
expensive to genotype thousands of individuals for hundreds of thousands single-nucleotide
polymorphisms (SNPs) for large-scale whole-genome association studies for many researchers. A
two-stage design has been a promising alternative: in the first stage, only a small fraction of samples
are genotyped and tested using a dense set of SNPs, and only a small subset of markers that show
moderate associations with the disease will be genotyped in the second stage. In this report, I
developed an approach to select and prioritize SNPs for association studies with a two-stage or
multi-stage design. In the first stage, the method not only evaluates associations of SNPs with the
disease of interest, it also explicitly explores correlations among SNPs. I applied the approach on
the simulated Genetic Analysis Workshop 15 Problem 3 data sets, which have modeled the
complex genetic architecture of rheumatoid arthritis. Results show that the method can greatly
reduce the number of SNPs required in later stage(s) without sacrificing mapping precision.

Background
A two-stage design has been a promising strategy for
genome-wide association studies [1-5], primarily for the
purpose of reducing genotyping costs. Studies have shown
that two-stage designs can effectively reduce costs, even
with a much higher per genotyping costs in stage two
using specially designed arrays, compared to fixed arrays

in stage one [3]. An optimal two-stage design to achieve a
minimum cost with a similar overall significance level
and statistical power depends on many factors such as dis-
ease allele frequencies, disease effects, fraction of samples
genotyped in stage one, fraction of markers genotyped in
stage two, as well as genotyping cost ratio in stage one and
stage two. Several groups have investigated the issue using
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different statistical tests under different assumptions [1-
4].

Generally speaking, there are three test strategies that can
be adopted in stage two, namely, replication-based analy-
sis, joint analysis assuming homogeneity between stages,
and joint analysis that allows heterogeneity between
stages [1-4]. In a replication-based study, data in stage two
are considered alone and a positive association is reported
if a statistical score reaches its significance level. In a joint
analysis, subjects in stage one and in stage two will be con-
sidered together at the end, while raw data from two
stages are combined first to obtain an overall statistic if
assuming homogeneity, and statistics from two stages are
combined if assuming heterogeneity [4]. A common prac-
tice to evaluate statistical significance for multiple tests by
all three methods is to use Bonferroni adjusted p-values,
which basically assumes all single-nucleotide polymor-
phisms (SNPs) are independent and in linkage equilib-
rium. Based on data from the HapMap project [6] and
some other sources such as the Cancer Genetic Markers of
Susceptibility (CGEMS) project http://cgems.cancer.gov,
the assumption of linkage equilibrium is unlikely to hold
when using SNP arrays with hundreds of thousands mark-
ers because many nearby SNPs are in high linkage disequi-
librium. The Bonferroni correction is highly conservative
and may partially explain the preliminary negative results
from the CGEMS project: none of the 300 K SNPs are sig-
nificantly associated with prostate cancer at a genome
level of 0.05 after the Bonferroni correction. Permutations
tests can be performed for the replication-based analysis,
but it is not straightforward to extend permutation tests to
joint analysis [7]. In addition, permutation tests are usu-
ally time-consuming and unlikely scale up to genome-
wide studies. In this report, I explicitly explore the
dependence between SNPs within a two-stage design
using the simulated dense SNP data sets provided by
Genetic Analysis Workshop 15 (GAW15) by applying a
clustering algorithm and employing the joint analysis
strategy for power studies.

Methods
The algorithm was developed based on the following
observations. For high-density SNP markers (e.g., 300 K
or 500 K SNP arrays), it is likely that nearby SNPs are in
linkage disequilibrium (LD). In a two-stage design, usu-
ally a liberal significance level α (such as 0.05 without the
Bonferroni correction) in stage one is used to ensure that
no true signals will be filtered out. On average, Mα SNPs
will be selected to stage two, where M is the total number
of markers in stage one which is 300 K or 500 K. However,
most of the Mα SNPs are false positives with respect to the
disease in study. Furthermore, if a SNP shows a moderate
association with the disease and has been selected in stage
one, it is highly likely that its nearby SNPs that are in high

LD with it will also be selected to stage two. In other
words, many of the Mα SNPs may also have high LD.
Therefore, I propose to apply a clustering algorithm to all
SNPs that have been selected from stage one to explore the
dependence relationship among the Mα SNPs. More spe-
cifically, all the Mα SNPs are first ranked according to
their significance levels. Starting from the SNP with the
highest rank (smallest p-value), all of the SNPs that are
highly correlated with it (with the pairwise LD D' larger
than a predefined threshold) will be grouped as a cluster
conditional on the requirement that they are within a cer-
tain physical distance (which is a parameter). The cluster
will be represented by the SNP with the highest rank. The
process will continue in the decreasing order of SNP rank-
ing for all SNPs that have not yet been clustered, until all
the SNPs have been processed. At the end, the algorithm
returns a set of clusters, each represented by a SNP with
the highest rank within its cluster. A SNP can only be
grouped to a nearby representer (defined by the distance
threshold) to eliminate false signals of LD that can occur
between two SNPs by chance. SNPs in a cluster are not
necessarily consecutive. Clearly, the above clustering algo-
rithm can reduce the number of SNPs to be considered in
stage two and its effectiveness depends upon correlations
among SNPs, as well as the two parameters. Joint analysis
assuming heterogeneity is adopted in this study because it
has higher power than replication-based analysis and it
requires fewer assumptions. A proper significance level
has to be derived for such an analysis. In general, suppose
a liberal significance level α with the critical value c1 is
used in stage one. Let X1 denote the χ2 test statistic based
on samples in stage one. Only markers with X1 > c1 will be
further considered in stage two. For a marker to be geno-
typed in stage two, let X2 denote the test statistic using
samples from stage two. Under the null hypothesis of no
association, X1 and X2 are independent and follow χ2 dis-
tributions with 1 degree of freedom. For the joint analysis,
the statistic X is equal to the summation of X1 and X2.
Notice that X and X1 are not independent even under the
null distribution. Let f(x) and F(x) denote the probability
density function and the cumulative distribution function
of χ2 distribution with 1 degree of freedom, the signifi-
cance level of X with a value c can be calculated based on
the following formula through numerical methods:

I applied the above clustering algorithm within a two-
stage design using the joint analysis on the simulated data
sets of Problem 3. All analyses were carried out with
knowledge of true disease gene locations. I first tested the
above algorithm on the dense SNP set on chromosome 6,
which contains the HLA-DRB1 locus and Locus D. The
total number of SNPs is 17,820, with an average inter-
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marker interval of 10 kbp, which corresponds to a 300 K
array. As a comparison, I also applied the algorithm on
the SNP data of chromosome 18 that mimic a 10 K SNP
chip set. SNP data on chromosome 1 were used to evalu-
ate the type I errors. I first constructed data sets for a case-
control study with a two-stage design. For each data set,
only one affected child was randomly chosen as a case
subject from each nuclear family with an affected sib pair.
One child is selected as a control subject from each nor-
mal family. Therefore, all cases and controls are independ-
ent. Because some alleles around the HLA-DRB1 locus
have very strong effects on the disease status, only a very
small fraction of cases and controls were randomly
selected for testing from all subjects (1500 cases and 2000
controls). Let n denote the total number of subjects tested
in stage one and stage two together, where an equal
number of cases and controls were tested. For chromo-
some 6, n took the values of 100, 200, and 300. Let f
denote the fraction of the number of subjects in stage one,
and f took the values of 0.3, 0.4, and 0.5 in this experi-
ment. I assumed only nf subjects were genotyped for all m
SNPs in stage one. The Pearson χ2 statistic was used to
select a subset of k SNPs for stage two based on a signifi-
cance level of 0.05 without adjustments. The clustering
algorithm was then applied to the k SNPs with a LD
threshold D' = 0.8 and a distance threshold of 100 kbp for
chromosome 6. For each parameter combination, 100
independent replicates were randomly sampled from the
original data sets. I have investigated and compared the
power, costs, significance levels, and prediction errors (the
distances from the predicted locations to the true gene
location) of three methods, namely, the one-stage design
using all data, the two-stage design without clustering,
and the two-stage design with clustering. For chromo-
some 18 and chromosome 1, because the total number of
markers on each chromosome is much smaller than the
number of SNPs on chromosome 6, and the effect of
Locus E on chromosome 18 is much smaller than the
HLA-DRB1 locus, a different set of parameters has been
used (e.g., n = 750, 1000, 1250; and the distance thresh-
old for clustering is 5 Mbp).

Results
Power, number of positive SNPs, and significance levels
Because of the unusually strong effect of the HLA-DRB1
locus, all three methods have returned more than one sig-
nificant SNPs that are close to the locus, even with as few
as 100 individuals (Table 1). The numbers of positive
SNPs increase dramatically with the increase in sample
sizes, while show little decrease when using a more strin-
gent overall significance level. Most of the SNPs are not
causal SNPs but are in close linkage and high association
with causal SNPs. A few that are far from the causal SNP
can be regarded as false positives. With clustering, the
number of positive SNPs drops to half to one-third of the
number without clustering, which indicates that the clus-
tering algorithm has grouped many SNPs selected from
stage one together because they are close to each other
(distance < 100 kbp) and have high correlations (D' ≥
0.8). Because it is impossible to directly assess power of
the three methods using current data sets, the significance
levels of the most significant SNPs by three methods are
presented in Table 2. The one-stage design achieves the
most significant results (smallest p-values), even after
being adjusted by the number of total tests. The power of
joint analysis with two-stage designs is close to that of the
single stage design. The two-stage design with clustering
achieves slightly better results than the original two-stage
design.

Distances
Another measure to compare the three methods is to look
at the distances of the predicted locations (the most signif-
icant SNPs) from the location of the HLA-DRB1 locus.
Interesting, there are no significant differences between
the three methods (Table 3). Although the effect of HLA-
DRB1 locus is so strong, the most significant SNPs can be
located 70 kbp away. The two-stage method with cluster-
ing can significantly reduce the number of typed SNPs in
stage two without losing any precision in terms of map-
ping utility.

Table 1: Mean (SD) number of positive SNPs at significance level α and fraction of samples f in stage one and for sample sizes 100, 200, 
and 300 for each method (one-stage design, two-stage design, and two-stage design with clustering)

100 200 300

α f 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c

0.05 0.3 15.8(± 0.42) 6.8(± 0.20) 27.6(± 0.54) 10.7(± 0.25) 39.7(± 0.62) 15.0(± 0.29)
0.4 17.9(± 0.44) 16.1(± 0.43) 6.5(± 0.19) 31.1(± 0.62) 28.3(± 0.58) 11.3(± 0.25) 44.9(± 0.71) 40.1(± 0.63) 15.3(± 0.27)
0.5 16.1(± 0.42) 6.9(± 0.18) 28.2(± 0.56) 11.4(± 0.26) 40.5(± 0.64) 15.7(± 0.27)

0.01 0.3 14.0(± 0.41) 6.0(± 0.20) 24.6(± 0.48) 9.8(± 0.23) 35.6(± 0.57) 13.5(± 0.27)
0.4 15.7(± 0.41) 14.2(± 0.38) 6.0(± 0.18) 27.6(± 0.54) 25.0(± 0.47) 10.4(± 0.22) 39.4(± 0.62) 36.0(± 0.54) 14.0(± 0.26)
0.5 14.2(± 0.39) 6.2(± 0.16) 25.1(± 0.48) 10.3(± 0.23) 36.1(± 0.56) 14.3(± 0.25)
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Number of genotyped SNPs and costs
By clustering nearby SNPs that are in high LD, one can sig-
nificantly reduce genotyping costs in stage two. On aver-
age, the number of SNPs for the second stage with
clustering (781 ± 12) is only about one half of the number
of SNPs without clustering (1846 ± 72). Those numbers
are very robust with regard to sample sizes and the frac-
tions of samples being genotyped in stage one. The costs
for the two methods with a two-stage design are the same
for stage one (which is about half to 30% of the cost of
one-stage design). And the cost of the two-stage design
with clustering is about half of it without clustering. The
overall saving depends on the cost ratio of genotyping a
single SNP in stage one and in stage two.

Rare alleles
There is another locus on chromosome 6 about 5 cM away
from the HLA-DRB1 locus that contributes to the develop-
ment of rheumatoid arthritis (RA). But the disease allele
has a very low frequency (0.0083) the above procedure
cannot detect the signal with small sample sizes (smaller
than 300).

Results on chromosome 18
The same procedure has been applied on chromosome 18
(with 303 markers) using a different set of parameters.
Results show that almost no SNPs that are significant in
stage one can be grouped together when the LD threshold
D' = 0.8, even when the distance threshold as large as 5
Mbp. Therefore, the above approach is effective when
using very dense SNP sets such as 300 K or 500 K arrays.

Type I errors
No genes on chromosome 1 have effects on RA in the sim-
ulated data, so it was taken as a data set in evaluating type
I errors for the three methods. Because this is another data
set mimicking a 10 K SNP chip, the results from the two-
stage designs with and without clustering are quite simi-
lar, and both methods have correct type I errors at both
0.05 and 0.01 level (sample sizes 750, 1000 and 1250).
The one-stage design using Bonferroni correction has cor-
rect but much lower error rates, which means a Bonferroni
correction is conservative even for SNPs with low correla-
tions.

Discussion and conclusion
For very dense SNP arrays, it is highly likely that SNPs
within a short distance are not independent from each
other. In this report, I have investigated a strategy of eval-
uating SNP correlations within a two-stage design using
case-control samples, and have applied the algorithm on
the Problem 3 simulated data sets of GAW15. The strategy
can reduce the genotyping costs in stage two by half with
similar or better performance (power/significance level,
number of false positives, mapping precision) on data sets
based on 300 K SNP arrays. Two-stage designs are promis-
ing for genome-wide association studies. As illustrated in
this paper, advanced processing in stage one can further
reduce genotyping costs in later stages without sacrificing
mapping precision. A potential drawback using SNPs with
little redundancy is that a failed assay in stage two for a
marker SNP will lose information on a whole region of
the genome.

Table 2: Mean (SD) significance levels (-log10(p)) for each design for fraction of samples f in stage one and for sample sizes 100, 200 and 
300 for each method

100 200 300

f 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c

0.3 10.8(± 0.29) 11.0(± 0.30) 25.1(± 0.40) 25.3(± 0.41) 39.7(± 0.47) 39.9(± 0.49)
0.4 11.6(± 0.30) 10.7(± 0.29) 11.0(± 0.30) 26.1(± 0.40) 25.1(± 0.40) 25.4(± 0.40) 40.8(± 0.47) 39.7(± 0.47) 40.1(± 0.47)
0.5 10.8(± 0.30) 11.1(± 0.30) 25.2(± 0.40) 25.5(± 0.40) 39.7(± 0.47) 40.1(± 0.47)

Table 3: Mean (SD) distances of the predicted locus from the disease locus (kbp) for fraction of samples f in stage one and for sample 
sizes 100, 200 and 300 for each method

100 200 300

f 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c 1 stage 2 stage 2 stage-c

0.3 68(± 5.8) 85(± 5.8) 85(± 6.0) 90(± 5.9) 82(± 5.7) 83(± 5.7)
0.4 68(± 5.7) 67(± 5.7) 75(± 5.8) 86(± 6.0) 87(± 6.0) 91(± 6.0) 81(± 5.6) 81(± 5.6) 82(± 5.7)
0.5 69(± 5.8) 73(± 5.9) 86(± 6.0) 90(± 6.0) 80(± 5.7) 81(± 5.7)
Page 4 of 5
(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S136 http://www.biomedcentral.com/1753-6561/1/S1/S136
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
This work was supported by NIH/NLM grant LM008991, and in part by 
NIH/NCRR grant RR03655. The author thanks the group editors and refe-
rees for their diligent review and time spent in helping to improve the man-
uscript.

This article has been published as part of BMC Proceedings Volume 1 Sup-
plement 1, 2007: Genetic Analysis Workshop 15: Gene Expression Analysis 
and Approaches to Detecting Multiple Functional Loci. The full contents of 
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S1.

References
1. Satagopan JM, Elston RC: Optimal two-stage genotyping in pop-

ulation-based association studies.  Genet Epidemiol 2003,
25:149-157.

2. Thomas D, Xie R, Gebregziabher M: Two-stage sampling designs
for gene association studies.  Genet Epidemiol 2004, 27:401-414.

3. Wang H, Thomas DC, Pe'er I, Stram DO: Optimal two-stage gen-
otyping designs for genome-wide association scans.  Genet Epi-
demiol 2006, 30:356-368.

4. Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more
efficient than replication-based analysis for two-stage
genome-wide association studies.  Nat Genet 2006, 38:209-213.

5. Hirschhorn JN, Daly MJ: Genome-wide association studies for
common diseases and complex traits.  Nat Rev Genet 2005,
6:95-108.

6. The International HapMap Consortium: A haplotype map of the
human genome.  Nature 2005, 437:1299-1320.

7. Lin DY: Evaluating statistical significance in two-stage genom-
ewide association studies.  Am J Hum Genet 2006, 78:505-509.
Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16607626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16607626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16255080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16255080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16408254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16408254
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Power, number of positive SNPs, and significance levels
	Distances
	Number of genotyped SNPs and costs
	Rare alleles
	Results on chromosome 18
	Type I errors

	Discussion and conclusion
	Competing interests
	Acknowledgements
	References

