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Abstract

Variance-components and regression-based methods are frequently used to map quantitative trait
loci. The normality of the trait values is usually assumed and violation of this assumption can have
a detrimental effect on the power and type | error of such analyses. Various transformations can
be used, but appropriate transformations usually require careful analysis of individual traits, which
is not feasible for data sets with a large number of traits like those in Problem | of Genetic Analysis
Workshop 15 (GAWI5). A semiparametric variance-components method can estimate the
transformation along with the model parameters, but existing methods are computationally
intensive. In this paper, we propose the use of empirical normal quantile transformation to
normalize the scaled rank of trait values using an inverse normal transformation. Despite its
simplicity and potential loss of information, this transformation is shown, by extensive simulations,
to have good control of power and type | error, even when compared with the semiparametric
method. To investigate the impact of such a transformation on real data sets, we apply variance-
components and variance-regression methods to the expression data of GAW15 and compare the
results before and after transformation.

Background

The rapid expansion of the size of data sets poses new
challenges to mapping genes associated with quantitative
traits. Facing massive amounts of data, it is no longer fea-
sible to analyze individual traits or genotypes manually.
Many methods, though theoretically advantageous, can-
not be used due to their requirements of user intervention
or a high demand for computing power. Automatic and
efficient algorithms become more and more important. In

this paper, we seek such an algorithm for the normaliza-
tion of a large number of quantitative traits.

Many models are used to map genes responsible for quan-
titative traits. Some of the most commonly used ones are
Haseman-Elston regression, variance components [1],
and variance regression [2]. All these methods perform
optimally when the trait values of family members follow
a multivariate normal distribution. Violation of this
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assumption can have detrimental effects on the type I
error and power, particularly for variance-components
methods [3]. Various methods have been proposed to
transform trait values, including simple transformations
such as square root and logarithm transformations, and
more advanced ones such as Box-Cox transformation and
rank-based transformations. However, the choice of trans-
formation is often arbitrary, and different choices can lead
to conflicting results. Diao and Lin [4] proposed a method
that treats the transformation as part of the parameter
space and estimates the transformation along with other
parameters. The resulting transformation is rank based
and is asymptotically efficient among all order-preserving
transformations. However, existing implementations are
computationally intensive.

None of these methods can be used for data sets with a
large number of quantitative traits, as those in Problem 1
of Genetic Analysis Workshop 15 (GAW15). In this data
set, there are 3554 traits and 2882 SNP markers across 23
chromosomes, collected for 194 individuals in 14 fami-
lies. Among all 3554 traits, almost half (45.8%) of them
fail the Anderson-Darling normality tests at the 0.05 sig-
nificance level. Given the large number of traits, it is not
possible to analyze each trait and transform them accord-
ing to their distributions or to use the computationally
intensive semiparametric algorithm. Tossing away half of
the traits because the uncertain impact of non-normality
on subsequent data analyses is not a good idea either,
even when there is an abundance of them.

We propose the use of a rank-based transformation
method called the empirical normal quantile transforma-
tion (ENQT). This method ranks the trait values and scales
the ranks to (-1, 1). It then transforms the scaled ranks to
a normal distribution using an inverse normal transfor-
mation. This method is computationally efficient and can
be blindly applied to all the quantitative traits, resulting in
perfectly normal trait values provided there are few tied
values. The major concern is that ENQT uses only the rank
information of the original trait values so it may not per-
form well compared to customized transformations for
each trait, or transformation obtained from the semipara-
metric quantitative trait locus (SQTL) method [4].

In this paper, we test the impact of ENQT on the power
and type I error of the variance component method using
extensive simulations. Then, we apply ENQT to the
GAW15 data set and study the impact of the transforma-
tion on the subsequent data analyses.

Methods

Simulations to test the impact of ENQT on power and type
I error

The parental trait is determined by H(Y;) where
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Yij= B Xyj+ BoXsij + & + Gij + ¢

is the original trait value of individual j in family i. H(Y) =
el + (5 +y)? transforms Y to a distribution with an aver-
age kurtosis of 54.1 and skewness of 4.98 if Y;; is normal
N(0, 1.5). X
standardized age (N(0, 1)) and sex (male or female with
equal probability) with £, = -0.5 and g, = 0.5. g; is the
major gene effect determined by the true QTL, which
assumes value -a, 0, or a for genotype AA, Aa, or aa, respec-

1j and X,;; are fixed covariates mimicking

tively. The major genetic variance is therefore 0,2 = 2pqga?

aZ

2
tribution with mean 0 and variance ;2. ¢;; is a normal ran-
dom environmental effect with mean of 0 and variance of

- Gy is the polygenic effect that follows a normal dis-

0,2. The genetic heritability h2 and major gene heritability
hg? are calculated as h? = (0,2 + o¢?)/0® and h? = o,%/ 2,
respectively, where o = 0,2 + 0% + 0,2 is the total sample
variance. The trait of offspring is determined in a similar
way but the offspring's polygenic effects are determined
oM 2

Gip Gy,

o
0,—< |, where G;f and GM are the

paternal and maternal polygenic effects of the parents,
respectively.

We simulated the same six schemes as those in Diao and
Lin [4]. Namely, we set 6%, 0% and ¢,2to (0, 1, 1), (0.2,
0.8,1), (0.4,0.6, 1), (0, 0.6, 1.4), (0.2, 0.4, 1.4), and (0.4,
0.2, 1.4) for schemes a through f, respectively. Among
these schemes, schemes a and d serve as null hypotheses
because their major gene heritabilities are 0. For each set-
ting, we generated 20,000 data sets. The variance-compo-
nents method was applied to original (H(Y};)), perfectly
back-transformed (Y;), and ENQT-transformed trait val-
ues. The SQTL method was also applied to the original
trait values. The percentage of simulations with p-values
less than 5%, 1%, and 0.1% are reported.

Application to Problem | of GAWI5

We took the expression data of Problem 1 of GAW15 and
transformed each trait by ENQT. The resulting traits are
normal with high p-values (>0.99) in normality tests.
Besides descriptive statistics (mean, variance, skewness,
and kurtosis), we applied the Anderson-Darling normal-
ity test and variance-components method to estimate
polygenic heritability. Using these initial statistics, we
chose several groups of traits that are:
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1. Normally distributed (p-value of Anderson-Darling
normality test >0.7) with before-transformation heritabil-
ity >0.3. This group has 81 traits.

2. Significantly non-normally distributed with p-value of
Anderson-Darling normality test <0.0001 and with
before-transformation heritability >0.4. This group has 43
traits.

3. Having high heritability (>0.6) before transformation.
This group has 37 traits.

4. Having a high difference in heritability before and after
transformation (>0.1). This group has 49 traits.

5. Having low difference of heritability (<0.001), with
before-transformation heritability >0.3. This group has 49
traits.

We use heritability as a criterion because traits with low
heritability may not be of interest. These groups some-
times overlap. For example, there are 16 common traits in
the non-normal and high heritability groups, indicating
potential exaggeration of the estimates of heritability due
to non-normality.

For traits in these groups, we performed and compared
full genome-wide scanning using variance component [1]
and variance regression [2] methods, and compared the
LOD scores at the SNP markers before and after transfor-
mation.

Results

Impact of ENQT transformation on power and type | error
Table 1 lists the percentages of simulations with p-values
less than the given significance levels. The four columns
correspond to trait values after a perfect back-transforma-
tion, no transformation, and ENQT transformation, all
analyzed by variance components method; and analyzed
by SQTL. Only results for simulations with two offspring
per family are reported.

http://www.biomedcentral.com/1753-6561/1/S1/S156

Scheme a and d reflect the null model for which there is
no major gene effect. Non-normality causes highly
inflated type I error for scheme a when no transformation
is applied, but not for scheme d. This is because departure
from normality only causes excess false positives when
there is residual correlation in the relatives not explained
by the major locus and kurtosis (or perhaps skewness),
which is the case for a but not d [5]. The variance-compo-
nents method seems to have a lower-than-nominal level
for simulation of sib pairs and a higher-than-nominal
level for larger sibships (results not shown). In either case,
ENQT provides the correct type I error level. The result of
SQTL is ambiguous because it shows lower-than-nominal
level type I error at 0.05 level but higher at 0.001 level. For
other schemes, it is clear that the power of the variance-
components method is greatly affected by non-normality.
The variance-components method using ENQT transfor-
mation has consistently better power than the SQTL
method. As a matter of fact, ENQT transformation
achieves roughly the same power as the perfect back-trans-
formation in all cases while preserving the type I error
rate.

GAW data set

ENQT transformation can have significant impacts on the
analyses of quantitative traits. Using trait 209785_s_at as
an example, we compare the LOD scores at the SNP mark-
ers on all autosomes, before and after ENQT transforma-
tion. This trait has kurtosis of 1.54 and skewness of -1.17.
Its heritability measures 0.41 before transformation and
0.44 afterward. After ENQT transformation, two large
peaks on chromosome 9 and 11 decrease dramatically,
with maximum decreases of LOD scores from 3.43 t0 1.61
and from 2.63 to 1.34, respectively. Smaller but some-
times wider peak changes can also be found on chromo-
some 1 (from 2.03 to 0.66), 5 (from 1.74 to 0.10), and 8
(from 1.50 to 0.14). On the other hand, the transforma-
tion magnifies a narrow peak on chromosome 11 (from
2.06 to 3.63) and induces a wide peak on chromosome 19
(from 1.15 to 3.35).

Table I: Power and type | error of simulations with varying level of heritability for sib pairs

Perfect transformation No transformation ENQT transformed Semiparametric QTL
Model 5% 1% 0.10% 5% 1% 0.10% 5% 1% 0.10% 5% 1% 0.10%

a 4.96 1.02 0.08 1.1 3.63 0.93 4.89 1.05 0.09 2.42 0.98 0.25
b 13.97 3.71 0.51 15.9 5.58 1.62 14.06 3.8l 0.51 8.85 3.87 1.32

31.69 11.98 245 22.92 7.95 1.83 31.55 11.96 2.45 23.72 12.67 5.52
d» 4.69 0.48 0.01 4.68 1.14 0.3 4.71 0.5 0.02 1.94 0.45 0.09
e 11.95 1.96 0.06 7.05 1.62 0.39 1.9 1.94 0.06 6.26 1.91 0.3
f 24.54 6.02 0.39 10.2 2.56 0.67 24.58 5.88 0.38 15.75 5.95 1.67

aThese replicates reflect the null model for which there is no major gene effect.
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Table 2: Change of LOD scores before and after ENQT transformation averaged over all traits in the groups

Average no. SNPs with LOD score above/below:

Method? LOD differenceb above | below |

Normal traits (81)

ve 0.020 6.3 10.1

reg 0.022 6.9 9.1
Non-normal traits (53)

ve 0.107 22,6 71.4

reg 0.086 314 36.4
High difference in heritability (49)

ve 0.105 25.7 779

reg 0.085 35.7 304
Low difference in heritability (49)

ve 0.043 14.0 22.0

reg 0.038 12.5 15.3
High heritability (37)

ve 0.110 28.7 86.1

rev 0.060 21.9 21.3

above 2 below 2 above 3 below 3
4.0 4.6 4.6 2.7
4.6 3.7 2.8 2.6
9.2 314 8.1 16.8
89 13.6 6.1 8.3
1.2 355 16.5 20.9
9.9 15.6 6.0 79
5.5 12.3 6.5 5.0
6.6 5.8 6.5 8.0
13.7 47.0 8.3 19.3
82 14.2 5.4 6.7

ayc and reg stand for variance-components and variance-regression methods, respectively.

bDifference in LOD scores averaged over all markers

Table 2 summarizes the change of LOD scores of the
genome-wide scan before and after ENQT transformation.
For each group, we calculate mean difference of LOD
scores, and mean number of SNP markers that have
become significant (with LOD > 1, 2, or 3) after transfor-
mation and the mean number of SNP markers that are no
longer significant (with LOD < 1, 2, or 3). For example, for
traits that are significantly non-normal, if we use LOD = 3
as the cut-off value, on average 16.8 markers are no longer
significant after transformation and 8.1 markers become
significant. Consecutive markers that form wide peaks are
counted individually.

ENQT transformation has a different impact on traits in
different groups. The average difference of LOD scores,
and the number of changed markers of the variance-com-
ponents method are larger than those of the variance-
regression method. This suggests that the variance-com-
ponents method is more sensitive to non-normality than
the variance-regression method.

For both mapping methods, ENQT transformation causes
more reduced LOD scores than increased LOD scores,
which may contribute to decreased false-positive rates.
Among these five groups, the normal group has the least
LOD score changes followed by the group with low
changes in heritability. Groups with high heritability dif-
ferences, significantly non-normal and high heritability,
have large changes in LOD scores. Note that these three
groups overlap and have seven traits in common. These
traits are 201481_s_at, 203032_s_at, 204428 _s_at,
205048_s_at, 209480_at, 219843 _at, and 65588_at.

Discussion

In this paper, we show that normalization has a signifi-
cant impact on the QTL mapping, using variance-compo-
nents and regression-based methods. We also show that
ENQT transformation is an efficient transformation that
outperforms traditional and semiparametric transforma-
tion methods. This method is especially suitable for prob-
lems with a large number of traits for which customizing
the transformation for each trait becomes infeasible.

Our simulations show that ENQT transformation per-
forms similarly to a perfect back-transformation and out-
performs the SQTL method, which has been proven to
have better power than square-root and logarithm trans-
formations for this particular example [4]. However, this
may reflect the particular simulation method and param-
eters we use. SQTL is rank based, is proven to be asymp-
totically efficient among all transformations that keep the
order of the original trait values, and has a power similar
to the traditional variance-components method with nor-
mally distributed data. These facts, along with the facts
that ENQT is also rank based and produces normally dis-
tributed trait values, indicate that ENQT should yield a
similar profile when compared with SQTL. The poor per-
formance of SQTL compared with ENQT could reflect dif-
ficulties in maximization over a higher-dimensional
likelihood space.

It should be pointed out that the optimal transformation
does not have to normalize the trait values. In the cases
when there are strong and discrete covariate effects, Y
may be bi-normal or some other non-normal distribu-
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tion. SQTL may perform better in such cases because it
assumes conditional normality and can in theory normal-
ize trait values after removing covariate effects.

GAW15 Problem 1 has fewer and larger families than
what we have simulated, and our simple transformation
may discard delicate within-family structures. For exam-
ple, we have seen traits that are associated with age, result-
ing in differences in normality test results for each
generation as compared to the entire population. How-
ever, given the small sample size, it seems impractical to
perform normalization at a finer scale.

The results presented use Anderson-Darling normality
test, even though other normality tests may produce dif-
ferent results. We repeated the normality tests using
Sharpiro-Wilk's test, which is suitable for samples of size
less than 200. The two tests largely agree with each other,
and there are only a few changes to the five groups of
markers we chose.

Conclusion

In summary, we show that normalization can have a
strong impact on the results of variance-components and
regression-based method and ENQT can be a good candi-
date to blindly transform a large number of quantitative
traits. It is therefore recommended that results based on
untransformed data be repeated with normalized trait val-
ues using ENQT method. If there are significant differ-
ences, caution should be taken when making statistical
inferences.
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