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Abstract

Performing linkage and association analyses on a large set of correlated data presents an interesting
set of problems. In the current setting, we have 3554 expression levels from lymphoblastoid cell
lines in 194 individuals from 14 three-generation Utah CEPH (Centre d'Etude du Polymorphisme
Humain) pedigrees. We formed multivariate expression phenotypes from six sets of genes. These
consisted of a set of genes identified by the data providers as showing common linkage to a region
of chromosome 14, as well as five other sets suggested by ontological evidence. Using principal-
component analyses, we generated seven quantitative phenotypes for expression levels from these
six sets of genes. We performed quantitative genome linkage screens on these traits using the
expression traits from the third generation of each pedigree. As expected, the strongest linkage
signal was achieved when the trait under analysis was the composite of the expressions of genes
previously showing linkage to chromosome 4. In particular, this trait produced a LOD score of
5.2 on chromosome 14. The trait also produced LOD scores over 3.5 on chromosomes |, 7, 9,
and | |; this suggests that these genes may be controlled by additional genetic factors on the
genome. Subsequent association analyses on the first two generations of these pedigrees identified
two polymorphisms on chromosome || as significant after correcting for multiple tests. These
results suggest that principal-component analyses are useful for the analysis of pleiotropic loci.
Furthermore, we have identified two single-nucleotide polymorphisms that may influence the
expression of multiple genes linked to chromosome 4.

Page 1 of 5

(page number not for citation purposes)


http://www.biomedcentral.com/1753-6561/1/S1/S46
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Proceedings 2007, 1(Suppl 1):S46

Background

The Genetic Analysis Workshop 15 data set consists of
3554 expression levels from lymphoblastoid cell lines in
194 individuals from 14 three-generation Utah CEPH
(Centre d'Etude du Polymorphisme Humain) pedigrees.
In earlier work [1], the data providers performed separate
linkage analyses for each expression phenotype and found
evidence of pleiotropy; multiple phenotypes showed link-
age to the same region on chromosome 14. Our goal was
to perform analyses of composite phenotypes in hopes of
identifying pleiotropic effects directly. We then followed
up the strongest linkage signals with association analyses.

Principal-components analysis (PCA) is a technique for
reducing multi-dimensional data sets into lower dimen-
sions for analysis. The goal is to capture as much variation
as possible of the higher dimensional data set in a lower
dimensional set. Because microarray expression data typi-
cally produces thousands of correlated observations for
each array, PCA is a natural analytic technique. Several
other groups have shown the utility of PCA for the decom-
position of expression data [2-4]; here we apply the
method in the context of linkage and association analyses.

Methods

Principal components theory

In microarray data, PCA provides orthonormal bases for
the expression array profiles and the gene transcriptional
responses. The details are well described elsewhere [4].

Linkage analyses

Our goal was to perform PCA on several different sub-
groups of expression phenotypes and then perform link-
age analysis on the component scores. We performed the
PCA in the R language [5]. In order to more closely match
the sibling analysis in [1], we only used phenotypes from
the sets of siblings in the third generation. In particular,
we selected one sibling at random from each sibship and
performed the PCA using those 14 independent individu-
als (assuming that the families are unrelated). Then the
loadings were used to compute the components on the
remaining siblings. This allowed us to perform linkage on
a different set of individuals than those used for the PCA.
To determine whether 14 individuals were sufficient to
generate reliable components, we performed repeated
samplings of 14 individuals at random from the third gen-
eration and re-generated component scores. We then
examined how correlated the scores were on the overlap-
ping individuals. We also examined the correlation with
component scores generated using all 110 individuals
from the third generation. Identity-by-descent matrices
for linkage analysis were generated using Loki [6] on sin-
gle-nucleotide polymorphisms (SNPs) thinned in order to
avoid elevation from linkage disequilibrium [7]. Linkage
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analysis was performed using the variance-component
(VC) methodology implemented in SOLAR [8].

We investigated the set of expression phenotypes linked to
chromosome 14 by Morley et al. [1]. This phase consisted
of 32 analyses: the expression levels of the 31 genes iden-
tified by Morley et al. [1], analyzed separately, and an
analysis of the trait formed by the first component of the
combined expression levels. We also examined the first
component from the multivariate trait of all 3554 expres-
sion phenotypes. Finally, we used the provided gene
expression data to examine PCA on three separate catego-
ries: 145 genes from the cytoskeleton category, 89 genes
from the protein modification category, and 255 genes
from the cell cycle category. The cytoskeleton and protein
modification categories had been identified by the data
providers as the most heavily represented categories
among genes with highly variable expression [9]. The cell
cycle category has been studied by other researchers using
PCA techniques [2,3].

Association analyses

For the strongest linkage signals, we downloaded data
from the HapMap project for the CEPH families for SNPs
within the two-LOD support [10]. We performed associa-
tion analyses using an additive model to code the SNP
genotypes using SOLAR. We also included age in the
model when it was associated with the principal compo-
nent. In this VC setting, age and SNP genotypes are treated
as covariates predicting trait phenotype while a kinship
matrix scaled by the trait heritability controls for the cov-
ariance from related individuals. We performed a two-
stage analysis: first, we tested association with all HapMap
non-synonymous SNPs; then, we tested association with
all HapMap SNPs in the regions. We used a Bonferroni
correction as well as a false-discovery rate (FDR) method
(QVALUE [11]) to evaluate the significance of association
in these two stages. The strategy of first focusing on non-
synonymous SNPs has been applied to complex diseases
[12]. Although mRNA expression levels of a single gene
can be modified by polymorphisms across the gene foot-
print [13], in this context we are attempting to identify
master regulators. We posit that non-synonymous
changes may result in functional differences in proteins
that regulate the mRNA expression of many other genes.

High heritability genes

For a number of phenotypes, SOLAR reported an esti-
mated heritability of 1.0. Further investigation revealed
that the individual expression levels as well as the compo-
nent scores often showed an intraclass correlation (ICC)
of more that 50% in sibships. Heritability is often esti-
mated as twice the intraclass correlation in sibships; this
would imply a heritability greater than one. This is clearly
nonsensical, so we suspect that this indicates a shared
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environment with an effect on multiple expression levels.
We performed a PCA on the 471 genes that had ICC in
sibships greater than 0.5 (the "high heritability" genes).
We also performed further tests to determine whether
these genes contained an over-representation of ontologi-
cal categories. In particular, we examined the 10 most rep-
resented ontological categories in the high heritability
genes, and then performed 10,000 re-samplings of 471
genes from all 3554 to determine whether any of these 10
categories were over-represented.

Results

Linkage analyses

We first examined the reliability of the PCA. Using the
entire set of phenotypes, we found that the components
generated from 14 unrelated individuals had a 98.7% cor-
relation with the components generated from all 110
third-generation individuals. Furthermore, 10,000
repeated samplings of 14 unrelated individuals produced
an average correlation of 96.1% with the 14 individuals
initially chosen. We took this as evidence that the compo-
nents were reliable, even using a relatively small number
of individuals; we then used the same 14 individuals
throughout. The PCA analysis of each of the six categories
of gene expression then produced 14 principal compo-
nents. Recently, Raiche et al. [14] developed a new tech-
nique to find the number of components to retain using
an "acceleration factor," a measure of decrease in propor-
tion of variance. For the cell cycle case, the analysis indi-
cated that two components should be retained; in the
other six cases, only the first component was retained. We
then performed VC linkage analysis on these seven traits.
We also performed linkage analysis for the separate
expression traits reported as linked to chromosome 14 by
Morley et al. [1] in order to replicate those findings.

The VC analysis of the separate phenotypes linked to chro-
mosome 14 yielded fewer significant linkage peaks than
originally reported; this was not unexpected because the
methodology differed. In particular, the original analyses
used a modification of the Haseman-Elston (HE) method
[15]; under some trait models VC and HE have widely dif-

Table I: LOD scores greater than 2.5
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ferent power [16]. The VC analysis of the principal com-
ponents for the seven traits revealed multiple signals in
the same region of chromosome 14 as well as novel sig-
nals on other chromosomes (see Table 1). The strongest
signal was of the phenotypes linked to chromosome 14,
with a LOD score of 5.2 in this location. This cannot be
considered as strong evidence of linkage; if the grouping
of signals by Morley et al. [1] on chromosome 14 were
due to chance alone, we would still expect to see a strong
signal in the region. However, the linkage that appears on
other chromosomes is quite interesting and would not be
expected if the grouping were due to chance alone.

Association analyses

For the association analysis, we focused on the five
regions with linkage signals over 3.5 for the traits linked
to chromosome 14, including the linked region on chro-
mosome 14. We found the first principal component of
these traits was strongly associated with age (p = 9.8 x 10
6), so we included age in all SNP analyses. We identified
761 nonsynonymous SNPs in these regions, so we set our
initial significance threshold to a conservative level of
0.05/761 = 6.6 x 105. One SNP, rs10458896, is signifi-
cant at this threshold (p-value of 4.5 x 10-3). The corre-
sponding g-value is 0.034; this is the only g-value less than
0.05. This is a non-synonymous SNP in KIF18A, a kinesin
family member on chromosome 11. In the analysis of all
the SNPs, we found 143,798 SNPs in these regions. We set
our significance threshold to 0.05/143798 = 3.5 x 107.
One SNP in an intergenic region on chromosome 11,
rs10768321, is significant at this threshold with a p-value
of 5.8 x 10-8 and a g-value of 0.008; again, this is the only
g-value less than 0.05.

Ontological categories of "high heritability" genes

For the analysis of the top ten ontological categories rep-
resented by the 471 "high heritability" genes, we com-
puted empirical p-values based on how frequently a
random selection of 471 genes contained more genes of
the category in question than in the high-heritability
group. We observed an over representation of the catego-
ries "nucleus" (p = 0.0006), "nucleotide binding" (p <

Principal component Chromosome Position LOD score
Chromosome 14 cluster | 30 cM 3.49
Chromosome 14 cluster 7 156 cM 3.76
Chromosome 14 cluster 9 120 ctM 3.75
Chromosome 14 cluster Il 95 cM 3.73
Chromosome 14 cluster 14 81 cM 5.20
All 3554 14 88 cM 2.96
Cell cycle (first component) 3 192 cM 2.84
Cell cycle (first component) 14 86 cM 2.75
High heritability 12 118 cM 261
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0.0001), "ATP binding" (p = 0.0001), and "RNA binding"
(p =0.0002).

Discussion

As expected, PCA of traits with common linkage to a
region on chromosome 14 does show a very strong signal
in this region. Several other novel linkage signals appear,
including two for the ontological category "cell-cycle." In
principle, one would expect some genes from the same
ontological category to be controlled by the same master
regulators; this has been demonstrated in yeast [2]. How-
ever, as of yet, the databases in humans are incomplete
and automated annotation is less accurate than manual
annotation [17]. These results should be viewed with
some caution. However, on the whole, these results
appear to validate the use of PCA to find pleiotropic loci
for multivariate phenotypes; this method has been previ-
ously shown as effective in both real [18,19] and simu-
lated [20] data.

We also note that the association analyses were performed
on a set of individuals related to, but distinct from, the
individuals used in the linkage sample. In particular,
some individuals from the first two generations of the
Utah CEPH pedigrees have been genotyped by the Hap-
Map project. For the linkage analyses, we used only the
phenotypes of the third generation. Because the linkage
analysis was restricted to a single generation, we only used
age as a covariate in the association analyses. A combined
linkage and association analyses would be possible if the
significant SNPs, 110458896 and 1s10768321, were gen-
otyped on the third generation of the CEPH pedigrees. We
would expect that the linkage signal on chromosome 11
would be reduced in a SOLAR analysis including these
SNPs as covariates if the SNPs "explain" some of the link-
age signal.

The "high heritability" genes present a conundrum. We
speculate that there may be shared environmental factors
that influence many expression phenotypes; these factors
would elevate the correlation in sibships and produce
high heritability estimates. Because four ontological cate-
gories (nucleus, nucleotide binding, ATP binding, and
RNA binding) are significantly over-represented in these
high heritability genes, further investigation into poten-
tial environment factors modifying these functions may
be of interest. These high heritability estimates do not
occur when the other generations are included in the anal-
yses; the inclusion of parents and potentially cohort
effects reduce the heritability estimates.

Conclusion

Performing PCA on a set of genes linked to chromosome
14 increases the LOD score; this cannot be considered
stronger evidence of linkage because we anticipate a simi-
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lar result if the clustering was due to chance. However, the
linkage on chromosome 14 is supported by the analysis of
all 3554 expression phenotypes where the largest peak is
in the same region. We also find strong evidence for other
loci on chromosomes 1, 7, 9, and 11 that control the
genes linked to chromosome 14.

Association analyses were successful in identifying two
polymorphisms on chromosome 11 regulating the set of
genes displaying linkage to a region of chromosome 14.
The association analysis was performed in two steps; first,
analysis of only non-synonymous SNPs and then analysis
of all SNPs in the regions of interest. The analysis of non-
synonymous SNPs yielded a polymorphism on chromo-
some 11 in KIF18A significant after correcting for the
number of non-synonymous SNPs. The analysis of all
SNPs in the region yielded a SNP in an intergenic region
on chromosome 11 significant after correcting for the
total number of SNPs in the regions of interest. Further
investigation into these SNPs may show a role in the reg-
ulation of a large number of genes.

We identified a set of genes that apparently had heritabil-
ity greater than one. Shared environmental factors may
increase the intraclass correlation within sibships. We
found four ontological categories (nucleus, nucleotide
binding, ATP binding, and RNA binding) that are signifi-
cantly over-represented in these high-heritability genes;
further investigation into potential environment factors
modifying these functions may be of interest.
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