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Abstract

In this report, we compared haplotyping approaches using families and unrelated individuals on the
simulated rheumatoid arthritis (RA) data in Problem 3 from Genetic Analysis Workshop (GAW)
I5. To investigate these two approaches, we picked two representative programs: PedPhase and
fastPHASE, respectively, for each approach. PedPhase is a rule-based method focusing on the
haplotyping constraints within each pedigree and solving them using integer linear programming.
fastPHASE is a statistical method based on the clustering property of haplotypes in a population
over short regions. It is believed that with family information, one can obtain more accurate phasing
results with considerably more cost for genotyping additional family members. Our results indicate
that, though only relying on the constraints within each family (with four members) individually,
PedPhase has better phasing accuracy than fastPHASE, even when the total numbers of genotyped
individuals are the same. But for missing genotype imputation, fastPHASE performs better than
PedPhase by taking population information into consideration. The relative influence of family
constraints and population information on haplotyping accuracy as shown in this report provides
some empirical bases on assessing the trade-off of genotyping family data under different settings.
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Background

To understand genetic variation among humans and to
identify correlations between genetic variation and phe-
notypic variation (such as disease status, quantitative
traits, etc.), it is necessary to understand haplotype struc-
tures in human populations [1]. However, the human
genome is a diploid and, in practice, haplotype data are
not collected directly, especially in large-scale sequencing
projects, mainly due to cost considerations. Instead, gen-
otype data are collected routinely in large sequencing
projects. Hence, efficient and accurate computational
methods and computer programs for the inference of hap-
lotypes from genotypes are in high demand. The existing
computational methods for haplotyping can be divided
into two categories: statistical methods and rule-based
(i.e., combinatorial) methods. Both approaches can be
applied to pedigree or unrelated individual data. An ear-
lier paper [2] has shown that the incorporation of pedi-
gree data can improve haplotyping accuracy. But the
conclusions are based on statistical criteria for a set of
small number of markers (10-20), that is, how the haplo-
type frequencies in a short region are preserved. Here, we
want to measure the accuracy of haplotype reconstruction
for each individual for large number of markers (500).

We chose two representative programs for family and
unrelated individual data and tested them on the Genetic
Analysis Workshop 15 (GAW15) data set. PHASE [3] (and
its latest version fastPHASE [4] is a popular statistical tool
for large scale haplotype inference using population (of
unrelated individuals) data. We have developed an effi-
cient rule-based algorithm (PedPhase [5,6]) for haplotype
inference from pedigree data that can output all optimal
solutions with smallest number recombinants. The pro-
gram HAPLORE [2,7] cannot handle data with recom-
binants, therefore it can not be used in this study.
Furthermore, when the number of marker considered is in
hundreds, it is highly likely that the haplotype solution in
each family is unique. When the haplotype solution is
unique in each family, results from PedPhase are optimal
because it is an exact algorithm. The result of this report is
based on the comparison of these two programs, fast-
PHASE V1.1 and PedPhase V2.1, using the simulated RA
data from GAWI15, in terms of accuracy, efficiency, and
costs.

Methods

Data

Problem 3 contains 100 replicates of simulated RA data
on 22 chromosomes. Each replicate includes 1500 nomi-
nally unrelated nuclear families of size 4 (2 parents and an
affected sib pair (ASP)). To have significant linkage dise-
quilibrium (LD) between markers, we have selected the
single-nucleotide polymorphism (SNP) data of chromo-
some 6 from the first 10 replicates. The chromosome 6
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data mimic a 300K-SNP array with 17,820 SNPs. We
picked the first 500 loci from chromosome 6. From each
replicate, the first 100, 200, and 400 individuals were
selected, respectively, so as to form three trial samples. To
examine the accuracy of methods for missing genotype
inference, three mutated copies of each trial sample have
been generated by randomly assigning a locus to be miss-
ing at probability 5%, 10%, and 15%. Finally, we had
three variations of individual numbers (i.e., 100, 200, and
400), and four variations of missing rates (i.e., 0%, 5%,
10%, and 15%), a total of 12 testing categories. For each
parameter combination, 10 independent replicates were
selected, resulting in a total of 120 input trials.

Comparison criteria

We compared the two methods in terms of accuracy, effi-
ciency, and costs. Accuracy is measured by three criteria:
the genotype inference error rate, the heterozygous switch
error rate, and the point-wise error rate. We compared the
reconstructed haplotype of each individual generated by
these two programs against the actual haplotype or phase
that is known from the original GAW15 data. The geno-
type inference error rate is the proportion of mistakenly
inferred loci out of all missing loci. The heterozygous
switch error rate is the proportion of mistakenly switched
loci out of all heterozygous loci. Missing loci were ignored
in computing the heterozygous switch error. The point-
wise error rate is calculated allele-by-allele along each
haplotype, yielding an overall score showing the differ-
ence of the generated haplotype against the original true
haplotype taking every locus into account.

Results

Results of fastPHASE and PedPhase on chromosome 6 are
presented in Table 1 and Table 2, respectively. Detailed
comparisons on each criterion are shown in Figure 1. As
shown in Figure 1 (panel 1), PedPhase appears to be con-
siderably faster than fastPHASE on the same number of
individuals. PedPhase has a much lower heterozygous
switch error rate and point-wise error rate, as shown in
Figure 1 (panels 3 and 4). On average, they are approxi-
mately 10 times smaller than those from fastPHASE.
Increasing sample sizes does not improve the accuracy for
fastPHASE. However, better results in missing genotype
imputation can be achieved for fastPHASE by incorporat-
ing information from population. For PedPhase, all three
error rates increase as the missing rate increases. But those
rates stay almost unchanged for different number of fam-
ilies. This is because PedPhase only exploits the con-
straints within a single family. The result of a specific
family will be the same regardless of the existence of the
other families. fastPHASE did not show any noticeable
improvement over heterozygous switch error or point-
wise error rate when we increased the number of individ-
uals from 100 to 400. But its genotype inference accuracy
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Figure |

Comparison of running time and error rates between fastPHASE and PedPhase on chromosome 6. Panels |, 2,
3, and 4 show the running time, genotype inference error rate, heterozygous switch error rate, and point-wise error rate of
PedPhase and fastPHASE on different testing categories, e.g., 200_0.10 means 200 individuals with missing rate 0.1.

improved slightly as the number of individuals increased.
On the other hand, for a fixed sample size, fastPHASE
only shows a gentle deterioration in genotype inference
when we increased the missing rate from 5% to 15%.

Discussion

The time complexity of fastPHASE is exponential to the
input size as a result of the nature of its statistical
approach. PedPhase, due to the use of integer linear pro-
gramming, also has a time complexity exponential to the
size of each family but it is linear to the number of nuclear
families (it processes one family after another). Because
the family size is fixed at 4 in this specific data set, Ped-
Phase actually has a theoretical time complexity linear to
the number of total families (input size). So it is not diffi-

cult to understand why fastPHASE is much slower than
PedPhase.

As we examined into the output of fastPHASE, we noticed
that a considerable proportion of its errors are block
switch errors, which means that it actually generates quite
a number of short but correct haplotype segments but it
does not correctly fix the phase of these segments. That's
why the heterozygous switch error rate and point-wise
error rate of fastPHASE are much higher than those of
PedPhase. This shows the importance of the use of family
constraints in haplotype reconstruction. On the other
hand, fastPHASE has better genotype inference perform-
ance than PedPhase. This robustness arises from its global
consideration of all individuals such that there is much
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Table I: Running time and error rates of fastPHASE on chromosome 6

Error rate

Individuals Missing Running time (sec) Genotype inference Heterozygous switch Point-wise
100 0.00 1437 e a 0.4835 0.1569
100 0.05 1563 0.1106 0.4926 0.1618
100 0.10 1380 0.1202 0.4967 0.1639
100 0.15 1671 0.1267 0.4829 0.1614
200 0.00 4679 e 0.4964 0.1609
200 0.05 4620 0.0922 0.4960 0.1620
200 0.10 4673 0.0979 0.4966 0.1635
200 0.15 4382 0.1064 0.4961 0.1631
400 0.00 9417 e 0.5035 0.1634
400 0.05 9411 0.0904 0.5093 0.1666
400 0.10 9360 0.0966 0.4880 0.1609
400 0.15 8524 0.1024 0.4959 0.1652
Aeeeee , Inference error rate is not measured because no missingness exists in this row.

higher probability for missing data in one individual to be
compensated by complete data in some other individuals.
Therefore, for haplotype inference using pedigree data, it
is necessary to take into consideration all the input fami-
lies when imputing missing genotypes.

Conclusion

The testing results have shown that even small families
with size 4 can provide much information for haplotype
reconstruction. Therefore, PedPhase performs better than
fastPHASE in phasing accuracy (heterozygous switch error
and point-wise error) on the given data set. The compari-
son of running time shows that methods working on
small families do not necessarily cost more running time
than methods on unrelated individuals while obtaining
better phasing results. For genotype inference, the per-
formance of fastPHASE is better than that of PedPhase,
which shows that unrelated individuals contain most of

the information that one should use in missing data
imputation. The result also reflects the relative importance
of family constraints and population information to hap-
lotyping accuracy under different settings. Family con-
straints always help to increase the phasing accuracy, but
may not be of significant help in missing data imputation
if the missing rate is high. Because family information and
population information are both important in haplotype
inference, a method taking into account both types of
information will be a necessary piece of future work in the
development of haplotype inference algorithms.
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Table 2: Running time and error rates of PedPhase on chromosome 6

Error rate

Individuals Missing Running time (sec) Genotype inference Heterozygous switch Point-wise
100 0.00 L a 0.0061 0.0011
100 0.05 I 0.1165 0.0215 0.0088
100 0.10 15 0.1439 0.0412 0.0190
100 0.15 16 0.1731 0.560 0.0279
200 0.00 24 e 0.0058 0.0022
200 0.05 25 0.1223 0.0231 0.0099
200 0.10 27 0.1291 0.0398 0.0181
200 0.15 35 0.1513 0.0517 0.0256
400 0.00 5t e 0.0056 0.0015
400 0.05 55 0.1240 0.0232 0.0094
400 0.10 6l 0.1418 0.0353 0.0179
400 0.15 66 0.1628 0.0459 0.0238
Aeemeee , Inference error rate is not measured because no missingness exists in this row.
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