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Abstract

Clinical heterogeneity of a disease may reflect an underlying genetic heterogeneity, which may
hinder the detection of trait loci. Consequently, many statistical methods have been developed that
allow for the detection of linkage and/or association signals in the presence of heterogeneity.

This report describes the work of two parallel investigations into similar approaches to ordered
subset analysis, based on an observed covariate, in the framework of family-based association
analysis using Genetic Analysis Workshop 15 simulated data.

With an appropriate choice of covariate, both approaches allow detection of two loci that are
undetectable by the classical transmission-disequilibrium test. For a third locus, detectable by the
classical transmission-disequilibrium test, a substantial increase of power of detection is shown.

Background

For several diseases, one can suspect that clinical or envi-
ronmental heterogeneity, expressed through covariates
such that the age at onset (AAO) of the disease, its severity,
or a measure of exposure to an environmental factor, is
associated with genetic heterogeneity. This heterogeneity
may hinder the detection of trait loci.

The ordered subset analysis (OSA) [1] was designed to
perform linkage analysis based on the ordering of families

on the values of a covariate (e.g., the average AAO of the
affected members of a family). The aim of OSA is to test
whether significant linkage can be observed in a subset
consisting of the first families of this ordering, up to a cer-
tain rank that is not predefined.

The performance of OSA for detecting gene x environ-
ment interaction has been assessed [2], showing a sub-
stantial increase of power in many situations. Recently,
Macgregor and colleagues [3] utilized a similar method in
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a proof-of-principle application with case-control genetic
association analysis. Their approach was implemented in
a scenario in which a quantitative trait related to the dis-
ease (e.g., severity of disease) was the covariate of interest.
Although they did not investigate the efficiency of the
approach under a variety of models, they nonetheless
demonstrated it as a viable approach to conducting such
analyses.

Herein, we introduce two slightly different approaches,
inspired by OSA and by Spielman's transmission-disequi-
librium test (TDT) [4], for family-based linkage and asso-
ciation testing. We apply these approaches to the Genetic
Analysis Workshop 15 simulated data (Problem 3). The
disease under study, mimicking the assumed rheumatoid
arthritis model, results from a complex combination of
genetic and environmental factors. The simulated model
was known prior to the analyses.

The OSA-TDT approach is very similar to Hauser's
approach, and aims at detecting linkage and association
of a marker with the disease in a covariate-ordered subset
of families. The order TDT (OTDT) approach (Perdry et
al., unpublished data) is slightly different, and aims at the
detection of genetic heterogeneity between the first and
the last families of the ordering.

Methods

Data used

We used all 100 replicates of 1500 nuclear families. The
ascertainment was based on the presence of at least two
affected sibs. The true value of each covariate, including
age at onset, severity, and IgM level, is given for all affected
individuals. In each family, we chose as the index case the
affected child who first appeared in the file; the studies
were performed on trio families including the parent and
the index.

http://www.biomedcentral.com/1753-6561/1/S1/S77

The covariates used were AAO, disease severity, and a
quantitative phenotype (IgM level). AAO depends on a
latent variable that weighed the hazard, latent severity,
and an independent random effect equally. Hazard and
latent severity both depend on genotypes at different loci:
all trait loci except G and H are involved in the hazard,
whereas severity is determined by G and H only. In addi-
tion, Locus F influences disease risk directly through the
IgM level. Thus, the IgM level is best conceptualized as an
endophenotype.

For the OSA-TDT, both severity and IgM level were used
separately as covariates, in ascending and descending
ordering, in data from each of the 100 replicates. For the
IgM covariate, we used a reduced data set, consisting of
the first 250 families (due to the high overall power). For
the severity covariate, we used both the reduced data set
(250 families) and the full data set (1500 families). We
selected two single-nucleotide polymorphisms (SNPs)
nearest to Locus F for assessing power when IgM level was
used as a covariate and two SNPs nearest Locus G and H
when severity was used as covariate. In addition, we
selected a group of SNPs unlinked with any simulated dis-
ease loci to demonstrate that the approach maintains the
proper type I error rate. Additional details regarding
selected SNPs can be found in Tables 1, 2, 3.

For the OTDT, we used only one covariate, namely the
AAOQ, and on each replicate we used the full data set. We
performed the classical TDT and the OTDT, focusing on
the six non-HLA trait loci (A, B, E, F, G, H) that were given
as candidates.

Spielman's TDT

Both of our methods use the principle of Spielman's TDT
[4]. This test is based on the observation of the transmis-
sion rate of a given allele at a bi-allelic marker locus by a

Table I: Percent power to detect association using IgM as a covariate in TDT vs. OSA-TDT in 250 pedigrees

No. replicates in which a significant effect was detected

SNPa p =0.05 p =00l p =0.001 p =0.0001
TDT without OSA

SNP11_389 80 64 25 10

SNPI11_390 4 | 0 0
OSA high

SNP11_389 100 100 100 100

SNP11_390 6 2 0 0
OSA low

SNP11_389 87 86 73 60

SNPI11_390 9 | 0 0
aThe SNPs tested were the SNPs nearest to Locus F.
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Table 2: Percent power to detect association using severity as a covariate in TDT vs. OSA-TDT in 250 pedigrees

No. replicates in which a significant effect was detected

SNP= p =0.05 p =00l p =0.00l p = 0.0001
TDT without OSA
SNP9_185 14 3 0 0
SNP9_186 2 0 0 0
SNP9_192 4 | 0 0
SNP9_193 5 0 0 0
OSA high
SNP9_185 7 | | |
SNP9_186 I 4 | 0
SNP9_192 10 2 0 0
SNP9_193 7 | 0 0
OSA low
SNP9_185 4 3 0 0
SNP9_186 13 2 0 0
SNP9_192 5 | 0 0
SNP9_193 3 0 0 0

aThe SNPs tested were the SNPs nearest to Loci G and H.

heterozygous parent to an affected child; under the null
hypothesis of no linkage or no association, this transmis-
sion rate is equal to 0.5. A value significantly different
from 0.5 gives evidence of linkage and association of the
disease with the marker.

The OSA-TDT method
The OSA-TDT method is an application of OSA to Spiel-
man's TDT. In the testing procedure, families are ranked

in order based on the value of the quantitative covariate.
The association test is performed on the initial subset,
starting at either the highest or lowest values. Pedigrees are
added sequentially, one at a time, until the entire sample
is analyzed. At each sequential addition of cases, the asso-
ciation test is repeated. A given value v in the range of the
values of the covariate divides the sample in two subsam-
ples: the first subset of families of the ordering, up to the
place where the value v is crossed, and the second subset,

Table 3: Percent power to detect association using severity as a covariate in TDT vs. OSA-TDT in 1500 pedigrees

No. replicates in which a significant effect was detected

SNP- p =0.05 p =0.01 p =0.001 b =0.0001
TDT without OSA
SNP9_185 2 0 0 0
SNP9_186 2 0 0 0
SNP9_192 6 2 0 0
SNP9_193 4 0 0 0
OSA high
SNP9_185 22 8 2 0
SNP9_186 58 36 12 4
SNP9_192 20 5 2 0
SNP9_193 4 | 0 0
OSA low
SNP9_185 Il 2 0 0
SNP9_186 33 10 | 0
SNP9_192 6 2 | 0
SNP9_193 3 | 0 0
aThe SNPs tested were the SNPs nearest to Loci G and H.
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consisting of the last families of the ordering, starting
from this very place. The smallest p-value obtained in any
single ordered subset is the intermediate test statistic used
for selecting the optimal value of v. Overall significance of
the test is assessed via permutation. The permutation test
is performed by repeating the process previously
described in many (10,000) randomly ordered data sets.
The minimum p-value from each randomly ordered data
set is selected for inclusion in the null distribution against
which the p-value from the covariate ordered subset is
compared. The empirical p-value, representing the signifi-
cance of covariate inclusion, is the proportion of p-values
from the null distribution smaller than the p-value from
the actual ordered subset. Analyses are repeated starting at
both the highest and lowest values.

The permutation statistic is computed to test the null
hypothesis H, against the alternative hypothesis H,,
defined as follows:

H,: There is no value of v for which there is evidence of
linkage and association in the ordered subsample.

H;: For some v, there is evidence of linkage and associa-
tion in the ordered subsample.

The OTDT method

The OTDT is based on a very similar ordered-based divi-
sion in subsamples, but the null and alternative hypothe-
sis test are different. In the OTDT we are testing the
specific hypothesis regarding the transmission rates of a
given allele M, at the locus M in the low and high subsam-
ple, designated here by 7and p. Our null hypothesis states
that there is no difference between 7 and p. We briefly
describe the construction of our test, which is a log-likeli-
hood ratio test.

A value ¢ of the covariate is used to form two subsamples
of families: S(¢) (and S'(c)), where S(c) is the subset of
families that has an associated covariate value less than ¢,
and S'(c) is the subset that has an associated covariate
value greater or equal to c. The general model has three
parameters: a parameter ¢ in the range of the values of the
covariate, and two parameters 7and pin [0,1] that are the
transmission rate of M;in S(¢) and S'(c). The null and
alternate hypothesis can be stated as follows:

H,: For every value of ¢, 7= p.
H;: There exists ¢ such that rand p are distinct.
Let n, c.and n, and n'; . and n',  be the total number of

transmissions of alleles M, and M, in the sample S(c) and
S'(c), respectively. Weletn, =n, .+n'; ;andn,=n, +n', .

http://www.biomedcentral.com/1753-6561/1/S1/S77

These are the number of transmissions of M, and M, in
the whole sample of families.

The likelihood of ¢, 7 and p can be written as

Z(ct,p)=1"e - (1-1)" ~pni/f -(l—p)n/“. Its maxi-

mum under the alternate hypothesis is Z; = max, . , Z(c,

o Tnp

7, p). Similarly, under the null hypothesis, the maximum

is Zy = max, .Z(c, 7, 7). Our log-likelihood ratio is now Q

=log( 21/ Zp).

High values of Q give support to H, against H,. The p-
value associated to the observed value of Q is computed
by a permutation procedure: the values of the covariate
are randomly shuffled, and the values of Q associated
with these distributions of the covariate are computed to
give an empirical distribution for Q under the null
hypothesis. The p-value is the proportion of Q values from
the null distribution greater than the observed value of Q.

This test is symmetric. Its result does not depend on
whether the ordering is ascending or descending. It aims
primarily at the detection of heterogeneity. If the null
hypothesis is rejected, then at least one of 7 or p is differ-
ent from 0.5, giving evidence for linkage and association
with the disease locus in at least one of the subsamples.

Results

Results for OSA-TDT

We assessed the type I error rate of the OSA-TDT. The type
I error rate is 1% at nominal alpha level of 0.01 across all
of the SNPs. The average TDT p-value for SNPs unassoci-
ated with disease loci across covariates is 0.50. Thus, the
permutation test exhibits the appropriate behavior.

The results for association between the SNPs closest to
each disease locus and the RA phenotype conditioning on
IgM level are summarized in Table 1. A SNP at Locus F
(SNP11_389), the locus whose action works through the
IgM level to influence RA risk, demonstrates a substantial
increase in power to detect the association with RA risk.
This increase is especially apparent at the lowest nominal
alpha levels. In contrast, including disease severity as a
covariate in OSA yields minimal power at the loci (G and
H) that influence variation in disease severity in the 250
pedigree subsets (Table 2). However, there is an increase
in power observed when the entire 1500 pedigree datasets
are used (Table 3). There was essentially no power to
detect all other disease loci, with a range of power of 2 to
11% per model when conditioning on the covariates.
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Table 4: Percent power to detect association using severity as a covariate in TDT vs. OTDT in 1500 pedigrees

Locus Chromosome TDT OTDT
A 16 97 21
B 8 83 6
E 18 100 52
F I 100 37
G 9 6 100
H 9 4 100
Results for OTDT For a third locus, detectable by the classical TDT, a remark-

Table 4 displays the power of TDT and OTDT for Loci A,
B, E, F, G, and H using severity as a covariate. The TDT
shows a strong power of detection on Loci A, B, E, and F,
whereas OTDT gives no or weak evidence of genetic heter-
ogeneity in the sense described in the previous section.

However, the role of the Loci G and H is not detected by
the TDT, but is detected by the OTDT in all replicates with
a permuted p-value lower than 10-4. This illustrates genetic
heterogeneity, reflected in the transmission rates of alleles
at these loci. For each replicate, the test gives a critical
value of the AAO: 31.3 and 31.8 years for Loci G and H,
respectively (in both cases, the standard deviation is close
to 7.3). Globally, the rate of transmission of one particu-
lar allele at these loci is significantly lower in families of
patients with an AAO less than 31 years compared to that
in families of patient with an AAO greater than 31 years.

Discussion

Both methods, the OTDT and OSA-TDT, allowed detec-
tion of the involvement of Loci G and H in the simulated
disease, using the AAO or the severity as a covariate.
Indeed, we know from the answers that these loci are
related to the severity, which is itself one of the elements
used to determine the AAO. These loci are not related to
the affection status, which is why they are undetectable by
a classical TDT.

Locus F was also detected by the OSA-TDT method when
families were conditioned on IgM level; this locus is
indeed related to the IgM level, which directly influences
the simulated RA risk; this influence explains why this
locus is already detectable by a classical TDT. Neverthe-
less, we demonstrated dramatic increases in power when
using small data sets. That is, the OSA-TDT method main-
tains very good power in conditions where the power of
the TDT is low.

Conclusion
The two ordering TDT methods allowed detection of two
loci which are undetectable by the classical TDT, being
unrelated to the affections status, but rather moderating
its expression.

able increase in the power for detection has been shown,
thanks to the inclusion of an intermediate phenotype (the
IgM level).

These ordering methods allow dealing with the particular
situation in which a given covariate is suspected of reflect-
ing heterogeneity of the disease. A distinct approach for
testing heterogeneity, the predivided sample test [5],
requires a prior determination of the potentially heteroge-
neous groups. An advantage of both OSA-TDT and OTDT
is the removal of this requirement.

It appears that these ordering TDT methods are promising
for detection of loci modulating the expression of a dis-
ease, or the value of an endophenotype.
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