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Abstract

The genetic factors underlying many complex traits are not well understood. The Genetic Analysis
Workshop 15 Problem | data present the opportunity to explore whether gene expression data
from microarrays can be utilized to define useful phenotypes for linkage analysis in complex
diseases. We utilize expression profiles for multiple genes that have been associated with a disease
to develop a composite 'risk profile' that can be used to map other loci involved in the same disease
process. Using prostate cancer as our disease of interest, we identified 26 genes whose expression
levels had previously been associated with prostate cancer and defined three phenotypes: high,
neutral, or low risk profiles, based on individual expression levels. Linkage analyses using MCLINK,
a Markov-chain Monte Carlo method, and MERLIN were performed for all three phenotypes. Both
methods were in very close agreement. Genome-wide suggestive linkage evidence was observed
on chromosomes 6 and 4. It was interesting to note that the linkage signals did not appear to be
strongly influenced by the location of the original 26 genes used in the phenotype definition,
indicating that composite measures may have potential to locate additional genes in the same
process. In this example, however, extreme caution is necessary in any extrapolation of the
identified loci to prostate cancer due to the lack of data regarding the behavior of these genes'
expression level in lymphoblastoid cells. Our results do indicate there exists potential to augment
our current knowledge about the relationships among genes associated with complex diseases
using expression data.
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Background

Recent advances in biotechnology have resulted in an
explosion of genotypic and phenotypic data. Millions of
single-nucleotide polymorphisms (SNPs) can quickly and
accurately be genotyped, and microarray technology has
made it possible to simultaneously assess the expression
levels for many thousands of genes. The question
becomes: what knowledge can we extract from these
extensive data sources with respect to disease susceptibil-
ity? And how? The Genetic Analysis Workshop 15
(GAW15) Problem 1 data presents a unique opportunity
to explore whether gene expression data from microarrays
can be used to define useful phenotypes for linkage anal-
ysis to better understand disease susceptibility. The
expression data provided for Problem 1 includes 3554
genes that were previously established to have greater var-
iation between individuals than within individuals. These
expression levels are reasonable candidates for use as phe-
notypes in linkage analysis [1].

For the majority of complex traits the underlying genetic
factors are not fully understood, but for many, certain
genes and/or genetic pathways have been implicated or
related to the trait through expression experiments. The
expression levels of a gene may be controlled by regula-
tory genes elsewhere in the genome, and the expression of
multiple genes can be regulated by a common transcrip-
tion factor [2]. Hence, linkage analysis of gene expression
levels could conceivably identify regulatory loci associ-
ated with that gene. Further, and more related to a disease
end-point, if several genes are known to be related to a
given trait, it is also conceivable that their expression lev-
els could be combined to create a phenotype to be used in
linkage analysis to identify loci that are involved in dis-
ease susceptibility, perhaps through membership in the
pathway or interaction (epistasis) with the known genes.

In this study we explore whether gene expression profiles
for genes that have been associated with a disease can be
used to map other genes that are involved in the disease
process or highlight genes within the pathways that are
key factors. Here we specifically examine the approach for
prostate cancer.

Research has consistently shown that genetics plays a crit-
ical role in prostate cancer development, but the identifi-
cation of specific genes has proven to be very difficult.
Hereditary prostate cancer is a complex disease involving
numerous genes and variable phenotypic expression [3].
Recent research has demonstrated great potential for the
use of proteomic profiling and other biomarkers for pros-
tate cancer diagnostics [4]. One such study was able to dis-
criminate between benign and cancerous prostates with
perfect sensitivity in men with elevated prostate specific
antigen (PSA) levels using serum proteomic profiling [5].

http://www.biomedcentral.com/1753-6561/1/S1/S82

The GAW15 Problem 1 data provide an opportunity to
explore whether gene expression levels from lymphoblas-
toid cells can be used to develop a prostate cancer profile
phenotype for use in linkage analysis. Using expression
data from 26 genes whose expression levels had previ-
ously been reported to be associated with prostate cancer
[6], we defined individuals as having high, neutral, or low
risk profiles based on their individual expression levels.
Here we present the results of linkage analyses based on
those phenotypes.

Methods

Ashida et al. identified 21 genes that are commonly up-
regulated and 63 genes that are commonly down-regu-
lated in the transition from normal epithelium to cancer-
ous and/or prostatic intraepithelial neoplasia (PIN) [6].
Of these 84 genes, 26 were included in the data for Prob-
lem 1. These 26 genes are listed in Table 1. Using the
expression data for the 194 individuals in the Problem 1
data, we scaled the expression levels for each of these 26
genes to fit a standard normal distribution with mean of
0 and variance of 1. Two statistics, A and B, were then
computed for each individual. A represented the number
of genes for which the expression levels was greater than 1
standard deviation in the direction associated with pros-
tate cancer. B represented the number of genes for which
the expression level was greater than 1 standard deviation
in the opposite direction. One standard deviation was
selected arbitrarily as a threshold to ensure that the expres-
sion values were distant from the center of the distribu-
tion, while allowing for a sufficient number of
informative subjects in the subsequent linkage analysis.
An individual was considered to be in the "high-risk pro-
file" group if A > 4 and A-B > 2. Individuals were classified
to be in the "low-tisk profile" group if B > 4 and B-A > 2.
All other subjects were classified as "neutral" and were
considered as "unknown" in all linkage analyses. This
classification system was devised to distribute the influ-
ence of the 26 genes on the assigned risk profiles and to
prevent outlying expression levels of individual genes
from having undue influence. As shown in Figure 1, 53
subjects (25 male and 28 female) were classified with
high-risk profiles, 57 (32 male and 25 female) with low-
risk profiles, and 84 (42 male and 42 female) as neutral
(unknown). While women are not susceptible to prostate
cancer, they may still carry the susceptibility genes, hence
in our analyses both males and females are included. Fig-
ure 1 shows a scatter plot of the values of A and B for each
individual and the categorization to the high-risk, low-
risk, and neutral groups.

Three phenotype models were considered. The first model
("FULL") included the high-risk profile individuals as
"affected" and the low-risk profile individuals as "unaf-
fected"; neutrals were "unknown". The second model
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Table I: Genes used to create phenotype definition

Gene Location

Up-regulated
ABCC4 chr13q32
AMACR chr5p13.2-qlI.1
MIPEP chrl3ql2
PRCI chr15q26.1
SMS chrXp22.1

Down-regulated
ANXA2 chr15q21-q22
ARHGDIB chri2pl2.3
ASS chr9q34.1
BHLHB2 chr3p26
CD74 chr5q32
CSPG2 chr5ql4.3
CUTLI chr7q22.1
CX3CLI chrléql3
FHL2 chr2ql2-ql4
FLNA chrXq28
GATA3 chrlOpl5
GBP2 chrlp22.2 |
ER3 chrép21.3
IRFI chr5q31.1
KRT7 chrl2ql2-ql3
LY6E chr8q24.3
MMP7 chrllq21-q22
MYL9 chr20ql1.23
SERPINBI chrép25
TOP2B chr3p24
WFDC2 chr20ql2-ql3.2

("HIGH") included the high-risk profile individuals as
"affected" and all others as "unknown". The third model
("LOW") included the low-risk profile individuals as
"affected" and all others as "unknown". This final pheno-
type model is akin to an analysis searching for protective
genes. For the FULL and HIGH phenotype models, 10 of
the 14 CEPH (Centre d'Etude du Polymorphisme
Humain) pedigrees were informative for linkage, with
between two and eight affected subjects per pedigree.
Thirteen pedigrees were informative in the LOW analysis,
with up to nine affected subjects.

Dominant and recessive parametric linkage analyses were
performed using MCLINK, which uses Markov-chain
Monte Carlo simulation methods to sample haplotype
configurations to estimate the LOD statistic [7]. The inher-
itance model for the analysis was based on the "Smith"
model used to map the HPC1 locus, but without the spe-
cificity to males [8], and assumes a population prevalence
of 0.003 for the mutant allele. Genotypes for a genome-
wide panel of 2882 SNP markers were provided by
GAW15. The genetic map used in the analysis was based
on the Rutgers genetic map, with the positions of SNPs for
which genetic map position was not available interpo-
lated from flanking markers based on physical location

http://www.biomedcentral.com/1753-6561/1/S1/S82

Figure |

Phenotype distribution. A, the number of genes
expressed more than | SD in the direction associated with
prostate cancer for an individual; B, the number of genes
expressed greater than | SD in the opposite direction; 0,
neutral risk status; |, low-risk profile; 2, high-risk profile.

[9]. Any SNP located less than 0.001 cM from the preced-
ing SNP was eliminated from the initial analysis. After
completing the initial analyses, the best linkage peaks
were identified and those regions were reanalyzed using a
reduced marker map, with a minimum spacing of 0.3 cM
between SNPs [10]. This was done to control for the pos-
sible effects of linkage disequilibrium (LD), which may
inflate LOD scores. The linkage statistics for these chro-
mosomes were then confirmed by performing both para-
metric and model-free analyses with MERLIN [11]. Linked
pedigrees (LOD > 0.588, which represents a nominal,
uncorrected p < 0.05 for an individual pedigree) were
identified in the regions with HLOD > 1.9 (genome-wide
suggestive evidence for linkage [12]) and gene expression
profiles within those pedigrees were inspected to ensure
that the linkage evidence was not correlated with the
expression levels of any specific genes.

Results

The genome-wide scan results showing the HLOD statistic
for all models are shown in Figure 2. Significant linkage
evidence was observed on chromosome 6q (HLOD =
3.51). Other peaks over HLOD = 1.9 were observed on
chromosomes 3, 4, and 7. Only the peaks on chromo-
somes 4 and 6 retained at least suggestive linkage evidence
with the reduced marker set without LD.
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Figure 2

Genome-wide HLOD statistics. A, FULL analysis model; B, HIGH model; C, LOW (protective) model. The solid line rep-
resents the dominant inheritance model and the broken line represents the recessive model in each figure. HLOD values are
shown on the vertical axis, and chromosome number is shown on the horizontal axis.

The strongest linkage signal observed in the FULL analy-
sis, and the best result overall, was HLOD = 3.51 at marker
1s1491074 under the dominant model on chromosome
6q. As is shown in Figure 3, 2 of the 26 genes used in cre-
ating the phenotype (SERPINBI and IER3) are located on
chromosome 6, however, they are not situated near the
linkage peak. Chromosome 6 was reanalyzed using a map
with increased marker spacing (which reduced the
number of SNPs used from 101 to 70 and excluded SNP
1s1491074) and the maximum HLOD fell to 2.82, sug-
gesting the possible influence of LD in the initial result.
This result was confirmed using MERLIN. The model-
based HLOD statistic from MERLIN was very similar to
results from MCLINK for both the full and reduced
marker sets, although the model-free Kong and Cox LOD
score did not perform well.

The best result in the HIGH analysis was HLOD = 2.75 at
marker rs885103 under the dominant model on chromo-
some 4q. Three pedigrees were linked to the locus with
individual LOD scores > 0.588. None of the genes used to
determine the phenotype were located on chromosome 4.
Linkage results were unchanged when the peak was rean-
alyzed with the reduced marker map, as shown in Figure
3. MERLIN analysis confirmed the parametric linkage
result from MCLINK.

Discussion

One concern of a study based on expression levels of
known genes is that a linkage analysis may simply map
back to the genes used to construct the phenotype. This
did not appear to be the case for this study. None of the
genes were located near our best results on chromosomes
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Analyses with increased marker spacing. Detail of chromosome 6 from the FULL phenotype model and chromosome 4
from the HIGH phenotype model using a minimum marker spacing of 0.3 cM. The solid blue line in each panel represents the
dominant HLOD statistic as calculated by MCLINK, the broken red line shows the dominant HLOD from Merlin, and the black
dotted line shows the model-free Kong and Cox LOD score from MERLIN. The locations of genes included in the phenotype

definition are indicated at the top of each frame.

6 and 4. Our phenotype definition was simplistic, but was
designed to limit the influence of individual genes on the
phenotype, and thereby enhance the likelihood of identi-
fying a locus related to the entire set. It is interesting to
note that the regions we identified on chromosomes 6
[13,14] and 4q [15,16] have each been implicated in pre-
vious linkage analyses for prostate cancer. However, it is
premature to consider these as replications, because with-
out data indicating that the expression levels seen in
tumors [6] are also representative in lymphoblastoid cells,
there is no evidence that the risk profiles we created are
actually related to prostate cancer. This is a major weak-
ness of our particular example, and perhaps illustrates the
weakness of such approaches in general-that is, much of
the experimental data is still missing and will be expensive
to generate.

Because the true locations of any genes that interact with
or modify the 26 we studied are not known, the statistical
power of this approach can not be properly evaluated.
However, with the 14 CEPH pedigrees, we were able to
generate linkage peaks that appeared distinct from back-
ground noise. Further, we know that the linkage evidence
observed was not influenced by the linkage analysis
method chosen, as both MCLINK and MERLIN produced
almost identical results. Recognizing the limitations of the
data available, we present these results as proof of concept
that the expression levels of several related genes can be
combined to create a phenotype that can reasonably be
used in linkage analysis. Such an approach could identify
loci that regulate or contribute to disease pathways. More

work is needed to refine and test the methodology, and
more experimental data is needed to correlate tissue and
lymphoblastoid expression levels, but the approach
appears to have the potential to augment our current
knowledge about the genetic basis of complex diseases.
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