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Abstract

Background: Recently, gene expression levels have been shown to demonstrate familial
aggregation, suggesting a direct role of heritable DNA variation. We studied the gene expression
levels in lymphoblastoid cells of the Centre d'Etude du Polymorphisme Humain Utah families made
available to Genetic Analysis Workshop 15 (GAWI5), using genome-wide linkage analyses.

Methods: Heritability was estimated for the expression levels of each individual phenotype.
Genome wide linkage analysis was then performed using the 2819 SNPs for the expression levels
of all the genes.

Results: Heritability exceeded 0.21 for 50% of the expressed phenotypes. Genome-wide linkage
analysis demonstrated that 19 of them reached significance after correcting for multiple
comparisons, only 4 of which were reported previously. We did not identify any hot spots of
transcriptional regulation when assuming LOD score > 5.3 for significant linkage evidence.

Conclusion: Our analysis suggests that inconsistent results in comparison to the previous report
may be due to the different approaches, phenotype transformation, and different pedigree data
used in the analyses.

Background comparing variation among unrelated individuals,

Genetic diseases are the ultimate manifestation of patho-
logical genetic variation, although under some circum-
stances they may also reflect the influence of
environmental factors. Gene expression at the transcript
level (i.e., the "gene expression phenotype") is considered
an intermediate stage between DNA sequence variation
and complex traits. Recently, Cheunget al. [1] studied var-
iation in human gene expression across the genome by

among siblings within families, and between monozy-
gotic twins. They found significant evidence for familial
aggregation of gene expression phenotypes, suggesting a
contribution from germ line genetic variation. The same
group also performed genome-wide linkage analysis for
expression levels of 3554 genes in 14 large Centre d'Etude
du Polymorphisme Humain (CEPH) Utah families by
genotyping 2756 autosomal single-nucleotide polymor-
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phisms (SNPs). They identified significant linkage evi-
dence for a large proportion of the expression phenotypes,
further supporting a role for DNA sequence variation on
these phenotypes. Furthermore, they identified regions,
designated hot spots of transcriptional regulation, with
significant linkage to several expression phenotypes [2].
We studied the same expression data made available to
Genetic Analysis Workshop 15 (GAW15), using the vari-
ance-components method implemented in Merlin [3] in
order to compare to the results obtained in the original
report obtained with SIBPAL in S.A.G.E. [4]. The rationale
for this comparison is that the variance-components
approach may be more powerful than SIBPAL when a
phenotype is normally distributed, but although SIBPAL
is robust to the normality assumption, the variance-com-
ponents approach is not.

Methods

The human gene expression data in lymphoblastoid cells
included 14 three-generation CEPH Utah families. The
expression levels of 3554 of the 8500 genes tested were
available for GAW15. In addition, 2819 autosomal SNPs
were genotyped and provided by GAW15. The linkage
map of the SNPs was calculated based on the deCode map
using interpolation (Kong et al. [5]). We analyzed 3354
expression phenotypes after excluding SNPs on the X
chromosome and those with gene locations that we were
unable to locate.

Statistical analysis

We implemented the software SOLAR to calculate herita-
bility for each expression phenotype under the assump-
tion of a polygenic model [6]. Genome-wide linkage
analysis for each expression phenotype was then per-
formed using the multipoint variance-components
method as implemented in the software package Merlin.
The variance-components method decomposes the total
variance into the additive effect of a quantitative trait
locus (QTL), polygenic effects, and random environmen-
tal effects. The likelihood ratio test was applied to test the
null hypothesis of no additive genetic variance due to the
QTL. We also performed linkage analysis using SIBPAL
with w4 option for some phenotypes for comparison [4].
Because it was not our goal to address or evaluate correc-
tions for multiple testing, in the spirit of a GAW analysis,
despite the large number of tests performed, we present
only point-wise test results here.

Results

Figure 1 presents the distribution of heritability of 3354
expression phenotypes. The range of heritability is from 0
to 0.87 with an average of 0.22, suggesting a modest
amount of genetic contribution to the expression level.
The heritability distribution did not show clustering in
chromosome regions, suggesting the inheritable expres-
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sion phenotypes are randomly distributed across the
genome.

We next performed multipoint linkage analysis using the
variance-components approach implemented in Merlin.
We observed 197 genome scans with LOD scores > 3.3
among the 3354 genome scans. In this report we used the
criterion of a LOD score = 3.3 to correspond to a false-pos-
itive rate of ~0.05 for a genome-wide linkage analysis of
one trait [7], however we acknowledge that a better
approach might be through simulations. We expected 168
genome scans to have LOD score over 3.3 by chance
among the 3354 scans, i.e., relatively fewer than we
observed. We identified 19 expression phenotypes that
reached genome-wide significance after correction for
3354 tests (LOD > 5.3) according to Morley et al. [2] and
these genes are listed in Table 1. However, only 4 of them
overlapped with the set of phenotypes with the strongest
evidence of linkage found by Morley et al. [2], who used
SIBPAL in their analysis. Given the potential concern that
the inconsistencies were due to the different analysis
methods, genetic maps, or phenotype transformation, we
reanalyzed these 19 gene expression phenotypes using
SIBPAL. Ten of the 19 gene expression phenotypes had p-
values less than 1019, suggesting these two approaches
did contribute the difference of the results. Because SIB-
PAL is robust to the trait normality assumption [8] and
the results of Morley et al. used the log transformation of
the phenotypes, we also performed linkage analysis for
the log transformation of the 19 gene expression pheno-
types using the two methods. The LOD score of UGT2B17
dropped substantial using Merlin and a similar change
was also observed using SIBPAL. The expression of
UGT2B17 had a bimodal distribution before the log trans-
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Figure |
The heritability distribution of 3354 gene expression pheno-

types.
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formation and was skewed after the log transformation,
which may explain the difference. We also observed sub-
stantial differences of linkage evidence for expression of
PYGB and TMED10 when analyzed by Merlin and SIBPAL.
However, we did not observe any substantial departure
from a normal distribution for these two expression phe-
notypes either before or after the log transformation, sug-
gesting SIBPAL may be less powerful than the variance-
components method when a trait is normally distributed.
The range of heritability for these expression phenotypes
is between 0.22 and 0.87. The correlation between the
maximum LOD score and heritability is 0.64 (Fig. 2). The
correlation remains large (0.54) when we limited to the
LOD scores with heritability less than 0.1.

We next examined how many genes fall in the 1-LOD
drop linkage region of its corresponding expression phe-
notype. The average width of the 1-LOD drop linkage
region was 8.8 cM. Among the 197 regions with LOD
scores > 3.3, only five genes fell in the 1-LOD drop region
of the corresponding gene expression phenotype, indicat-
ing that the majority of the expression phenotypes are reg-
ulated by other genes. Morley et al. identified several
master regulators of expression phenotypes through use
of linkage evidence. We performed similar analyses by
dividing the autosomal genome into 331 windows of 8.8-
cM intervals and counted the number of linkage peaks
falling in each window among the 197 linkage peaks. We
identified five windows with over five hits and these win-
dows are presented in Table 2. We calculated the probabil-
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ity of observing five or more hits per window using the
same method described in Morley et al., and the probabil-
ity is less than 0.00038. When the critical LOD score was
increased to 4.0, we observed 81 linkage peaks and two
windows with over four hits. The probability of four or
more hits per window is less than 0.00012, assuming 81
linkage peaks randomly distributed. This suggested the
possible existence of master regulators of transcription.
We observed three hits in the hot spot region on chromo-
some 20 reported by Morley et al. when using the LOD >
3.3. However, the hot spot on chromosome 14 observed
by Morley et al. [2] was not represented in our analysis.
We did not observe any hot spots when the critical LOD
score was increased to 5.3.

Discussion

Gene expression phenotypes offer important insight into
naturally occurring variation and might represent inter-
mediate phenotypes between some genetic diseases and
DNA variation. The genetic contribution to expression
phenotypes has been studied in species from yeast to
human [1,8,9]). Linkage evidence for a large proportion
of the human expression phenotypes has been detected
using the CEPH Utah family by Morley et al. [2]. Morley
et al. also identified many hot spots of transcriptional reg-
ulation. Our heritability analysis using this data set also
suggested that genetics has a modest influence on gene
expression phenotypes. Overall, therefore, our results are
consistent with the report by Morley et al. [2]. However,
differences also appear between the two reports. Among

Table I: 19 gene expression phenotypes with genome-wide significant linkage evidence after correcting for multiple tests

Merlin VC LOD

Linkage peak position

SIBPAL linkage

Gene? Location log,-transformed  not log,-transformed  Chr  position (cM) h? log,-transformed  not log,-transformed
LOC388796 20ql | 14.65 13.92 20 59.3 0.66 29 x 1013 7.4 x 1013
ZP3 7ql1 13.91 13.34 7 84.5 0.87 I.I x 10-16 4.4 x 10-14
CHI3L2 Ipl3 13.06 12.72 | 119.2 0.75 <l|0-6 <l|0Q-le
LRAP 5ql5 11.38 851 5 105 0.58 <lo-lé 4.4 x 10-16
DDXI17 22ql3 11.36 10.3 22 49.8 0.59 3.0 x |01 4.4 x 10-12
PSPH 7pl5 10.99 8.74 7 78.7 0.64 5.0 x 10-° 52 x |03
UGT2BI7 4ql3 9.62 3.43 4 74.8 0.62 2.7 x 105 0.03
HLA-DPBI 6p21 8.87 8.8 6 49.7 0.7 5.0 x 106 3.2 % 103
ITGBIBPI 2p25 8.25 831 2 255 0.66 4.4 x 101 2.1 x |0-10
CSTB 21q22 7.39 7.54 21 85.4 0.49 7.4 x 1010 7.0 x 109
PPAT 4ql2 6.72 6.65 4 66.7 0.36 2.8 % 108 48 x 108
IRF5 7932 6.08 6.32 7 124.2 0.51 3.1 x 1015 1.8 x 10-14
PEX6 6p2l 5.86 5.67 6 56.4 0.63 2.1 x 105 9.2 x 107
RPL31 2ql1 5.77 5.87 2 116.3 0.22 52 x |01 49 x 10-14
PYGB 20pl | 5.66 3.96 4 55.6 0.67 0.085 0.38
HSDI17B12 Ipll 5.51 5.49 Il 50.6 0.55 I.I x 10-10 6.7 x |0-16
GSTMI Ipl3 5.49 5.14 | 1183 0.68 7.8 x 107 5.0 x |03
GSTM2 Ipl3 5.31 5.15 | 119.16 0.42 3.7 % 10¢ 1.5 x 10-5
TMEDIO 14q24 5.31 5.27 4 56.3 0.58 0.12 0.08
2 Genes in bold were also reported by Morley et al. [2].
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Figure 2
LOD scores vs. heritability.

the 13 expression phenotypes with the strongest linkage
evidence reported by Morley et al., only four are present in
our analysis.

Further analyses suggested several factors that might con-
tribute to the inconsistencies, as summarized below. 1)
We used different analysis approaches. In our multipoint
genome-wide linkage analysis we used the variance-com-
ponents approach implemented in Merlin while Morley et
al. applied SIBPAL, which is robust to the normality
assumption [8]. Using the exact same data for the 19 gene
expression phenotypes we still obtained different conclu-
sions regarding linkage for 10 expression phenotypes.
One potential reason may be the different power for the
two approaches when a trait satisfies the assumption nor-
mality. 2) The phenotype transformation may also con-
tribute. For example, after log transformation, the linkage
evidence of expression of UGT2B17 and PYGB was no
longer statistically significant. 3) Morley et al. [2] did not
include the data from grandparents in the analysis while
we used all the family data, which may also play a role,
although further confirmation is required from an analy-
sis that does not use the grandparental data.

Table 2: Hotspots of transcriptional regulation

Chromosome No. of hits Window region (cM)
2 5 79-88
3 10 18-27
4 5 53-62
I 12 88-97
22 5 18-26
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We failed to observe the hot spot of transcriptional regu-
lation on chromosome 14 reported by Morley et al. [2].
This inconsistency may also be explained by the reasons
we mentioned above. Also, Bastone et al. [10] reported
that the evidence of hot spots of transcriptional regulation
on chromosome 14 reported by Morley et al. [2] is driven
by a single family, indicating that genetic heterogeneity
exists in gene expression phenotypes. Wang etal. [11] per-
formed simulation permutation analysis by including and
excluding the highly correlated phenotypes, suggesting
the hot spots might be artificial. Further independent
studies, perhaps with larger sample size, may be required
in order to identify the true biological patterns.
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