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Abstract
A new method for constructing confidence intervals for the location of putative genes regulating
expression levels (quantitative traits) is proposed. This method is suitable for the "intermediate"
fine-mapping step usually performed between the initial whole-genome screening and the follow-
up fine mapping step as a means of reducing the size of the region where the latter is performed.
Assuming the existence of a single quantitative trait locus (QTL) in the region/chromosome
identified by the genome scan, the method constructs a confidence region for its true position by
testing each location in the chromosome to see if it can be the trait locus. We applied our method
to the gene expression data from Problem 1 of Genetic Analysis Workshop 15 (GAW15) data,
focusing on 25 genes that have previously been shown to share common regulating factor(s) on
chromosome 14. Our results pointed to the same region on chromosome 14 for 13 of the gene
expressions studied, not only partially reproducing the results of the previous analysis, but also
yielding 95% confidence regions for the regulatory quantitative trait loci. Moreover, we identified
three regions, one on each of the chromosomes 3, 9, and 13, which potentially harbor additional
common QTLs for several of the original gene expressions.

Background
The identification of variants (single-nucleotide polymor-
phisms, or SNPs)/genes that contribute to variation of a
quantitative trait is of great importance for understanding
these traits. Although there is a wealth of methods availa-
ble for detecting such quantitative trait loci (QTLs), most
of them are designed to provide evidence in favor of or
against the existence of a QTL. As such, these methods can
only point to the broad genomic regions where the puta-
tive loci lie, but they do not readily provide confidence

regions for the actual positions of the trait genes. Such
confidence intervals are useful for designing follow-up
studies, after preliminary linkage signals have been
detected, because they can significantly reduce the
number of candidate genes, thereby making follow-up
studies more time- and cost-efficient. Finally, an addi-
tional challenge that almost all current approaches are
faced with is the need for multiplicity adjustment for the
number of hypothesis tests performed. This is a rather for-
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midable task to undertake, given the complex dependen-
cies that data from genetic studies experience.

We propose a new method that can be used in the "inter-
mediate" fine-mapping step [1,2] between whole-genome
screening and follow-up studies to provide confidence
regions for the positions of putative trait regulating loci
identified by the former. Under the assumption of a single
QTL on the chromosome of interest, we test every location
in the region to see if it can possibly be the position of the
putative locus. We then derive a confidence region for the
true position of the gene by aggregating all locations for
which this hypothesis is not rejected. By controlling the
level at which the hypothesis tests are performed, one can
easily obtain confidence regions with a desired coverage
probability.

We applied our method to the gene expression (GE) data
of 194 individuals from the Centre d'Etude du Polymor-
phism Humain (CEPH) Utah families of European
descent (GAW15 Problem 1). From a total of more than
3500 GEs available, we decided to focus on 25 that have
been suggested to be (co-)regulated by variants located on
chromosome 14 [3]. More specifically, we treated each GE
as a quantitative trait and used our approach to construct
confidence regions for the loci contributing to its varia-
tion.

Methods
The hypotheses and the test statistic
For an arbitrary location τ in the genome consider testing
the following hypotheses:

H0 : τ = τ vs. H0 : τ ≠ τ,

where τ* is the true location of the QTL controlling the
expression level of a continuous phenotype. If we perform
the above hypothesis test at an α-level, then it is easily
seen that the collection of all loci τ that the null hypothe-
sis is not rejected forms an 1 - α confidence region for the
location of the QTL. In addition to allowing us to derive
confidence regions with known statistical properties, this
formulation of the null and alternative hypothesis helps
circumvent the need for multiplicity adjustment for the
number of locations tested.

In order to test the above hypotheses, we made use of the
method of the squared differences (SQD) of phenotypic
values of sib pairs introduced by Haseman and Elston
(HE) [4]. In brief, let us assume that we have phenotypic
values of a quantitative trait for n sib-pairs, and let yi be the
squared difference of the expressions of the two siblings in
the ith family. In addition, define πi to be the proportion of
alleles shared identical by descent (IBD) by the sib pair at

the trait locus. HE [4] proved that under the regression
model

Eyi = β0 + β1πi,

and assuming null dominance effect, or fairly large sam-

ple size, the coefficient β1 is simply -2 , where  is the

additive variance component attributed to the trait locus.
Fulker and Cardon [5] demonstrated that the same holds

if πi is substituted by πi(Gi), the expected number of alleles

shared IBD given the marker genotypes (Gi) of the family.

Based on this observation, one can easily test Eq. (1) by

simply testing the following hypotheses for each locus τ

where β1τ is the regression coefficient of the SQDs y values,

on the πτ(G) values, the observed IBD sharing by the sib

pair at the locus τ. Thus, in order to construct the confi-
dence region, we only need to estimate the additive effect
of the trait locus. Such an estimate can be obtained from
the data themselves after a linkage signal has been estab-
lished, i.e., the maximum test statistic used in the prelim-
inary analysis exceeds a certain pre-chosen threshold.
Assuming that the total number of sib pairs (n) is suffi-
ciently large, we can randomly split the data into two
groups of n1 and n2 = n - n1 pairs. Using the data from the

first group, we can estimate the additive genetic variance

as , where  is the estimate of the

regression coefficient of the SQD values on the observed

IBD sharing at the locus τmax, the location where the max-

imum test statistic of the whole genome screening
occurred. Then, based on the data from the second group

and for each location τ on the genome, we fit the regres-

sion in Eq. (2) to obtain the coefficients . Finally, we

test

to determine whether τ should be included in the confi-
dence region for the location of the putative trait contrib-
uting gene.

Data and phenotypes
Our data consisted of GE measurements on 3554 genes
for 14 three-generational CEPH families, averaging 14
members per pedigree for a total of 194 people. We chose
to analyze the GEs of 25 genes that have been suggested to
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be (co-)regulated by one or possibly multiple SNPs
located on a small genomic region of 5 cM toward the end
of chromosome 14 [3]. Genotypes on about 2800 SNPs
densely covering the whole genome (on average 1 SNP/
cM) were also available for all individuals. Because most
of the families were multigenerational with more than
two children, we extracted all possible combinations of
sib pairs, resulting in a sample of 376 pairs. Note that this
procedure does not yield an independent sample. We
could select one sib pair from each family and exclude it
from the analysis to remove this dependency [6]. How-
ever, previous experience with the CSI version for binary
traits [7] suggests that this dependency has a minimal
effect on the confidence regions. Because we expected the
CSI-QTL method to have a similar behavior as its counter-
part for binary traits, we opted to include all the pairs in
the analysis.

Analyses
Each GE of interest was analyzed according to the follow-
ing two-stage protocol. First, using the HE test statistic we
scanned the whole autosomal genome, 22 chromosomes,
to uncover chromosomes that potentially harbor regulat-
ing factors. In an attempt to hold the false-discovery rate
at a low level, we selected for further analysis only those
chromosomes that had a minimum observed standard-
ized score for β1 of less than -3.09 (pointwise significant
level of 0.001). In the second stage, we focused only on
the chromosome(s) that were identified on the prelimi-
nary analysis and applied our proposed method to con-
struct 95% confidence regions (CRs) for the true location
of the identified putative QTL. Although the sample size
of 376 sib pairs seems to be sufficiently large for each stage
of the analysis, splitting them into two groups as we
described earlier would lead to too small a sample size for
either. Thus, we decided to use all the sib pairs for both
estimating the additive variance and constructing the CRs.
We expect this to result in relatively conservative intervals
with true coverage probability higher than their nominal
value.

Results
Of the 25 GEs studied, only 20 of them revealed signals in
the preliminary scan on at least one chromosome. For the
majority (14) of the GEs, the genome screening suggested
the existence of a single chromosome housing a putative
QTL, while for half (3) of the remaining ones, it identified
two chromosomes. For the last three of them it pointed to
joint regulatory loci in three different chromosomes. In
Figure 1 we plotted all the resulting non-null 95% CRs.
The 14 GEs with CRs on a single chromosome are plotted
in black color, while the remaining GEs with CRs span-
ning multiple chromosomes are color-coded so as to be
easily identified across chromosomes. As it can be seen
from the figure, the resulting CRs were not uniformly dis-

tributed across the genome. They were located on a total
of nine chromosomes, with most of them clustered at
chromosome 14, possibly implying common co-regulat-
ing loci located on a ~24 cM region at the end of the chro-
mosome. All CRs on chromosome 14 included the 5-Mb
region 14q32, thereby reconfirming the findings of Mor-
ley et al. [3] that found evidence of trans-acting co-regula-
tors in that region. Furthermore, the CRs on three
additional chromosomes (3, 9, and 13) experience a sig-
nificant overlap, suggesting the potential existence of
additional co-regulating factors for several of the GEs
investigated.

Our results do not provide strong evidence to support the
existence of cis-regulating factors because for almost all of
the GEs, the constructed CRs are located on different chro-
mosomes than the one on which the gene under investi-
gation resides. The only exception is gene FHIT, which is
located on chromosome 3 about 70 cM from the begin-
ning of the chromosome. As we can see from the figure
(green line) its CR includes the segment (64 cM, 66.5 cM)
on the same chromosome, suggesting a possible cis-regu-
lating locus. Finally, although the CR for gene LSM3
(chromosome 3, at 3.1 cM) included genomic segments
on chromosome 3, these segments were at least 70 cM
away from its location, and hence do not provide strong
support for a cis-acting regulator.

Discussion
We have described a new method that can be used as a
tool in the "intermediate" fine-mapping step of linkage
analysis studies for providing confidence regions for the
location of putative QTLs after linkage signal has been
detected. Application of our method to the gene expres-
sion data from the CEPH families demonstrated that it
can successfully narrow the locations of regulatory regions
of expression levels of genes. By focusing on 25 GEs, we
were able to corroborate the previous finding of a 5-cM
regulatory region on chromosome 14 for multiple gene
expression traits. Furthermore, we found some evidence
for the existence of three additional regions that may also
contain loci that co-regulate the expression levels of sev-
eral of the genes studied.

Although we are highly encouraged by the concordance
between our results and those of previous analyses on the
same data, the resulting intervals were slightly wider than
what one might desire, averaging about 25 cM. A contrib-
uting factor might be that we estimated the additive vari-
ance component of the identified QTL from the data
themselves. As such, this estimate was correlated with the
data, leading to slightly wider intervals. Using two inde-
pendent samples, one for the estimation of the additive
variance and one for the construction of the CRs, will help
moderate this effect and likely lead to greater precision.
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However, in a real situation it may not be possible to
obtain two independent samples. In such a case, one may
employ alternative approaches to estimate the value of the
additive variance, such as variance-components estima-
tion methods [8]. We intend to investigate such alterna-
tives in the future in hopes of achieving greater
localization of the positions of the putative genes.

The current formulation of the method assumes negligi-
ble dominance variance at the trait locus identified by the
preliminary scan. Although in many instances this addi-
tive model may be a good approximation [9], there might
be situations in which this model may not be valid. In
such a case, ignoring existing dominance variance would
result in an inflated estimate of the additive variance com-

ponent. This inflation in turn may result in narrower
intervals with true coverage probability lower than the
nominal coverage that the intervals are reported to have.
Nevertheless, this would only be an issue for relatively
small sample sizes, because the bias of the additive vari-
ance estimate tends approach to zero as the number of sib
pairs increases [4]. Given the fairly large sample size we
had in our application, we expect that any effect from vio-
lation of this assumption to be minimal.

An issue with this two-step procedure is the fact the addi-
tive genetic variance is estimated only after a linkage sig-
nal has been established. Thus, it is very likely to be biased
upwards, especially when the sample size is relatively
small [2,10,11]. This bias may result in intervals with

95% confidence regions for the 20 GEs that pass the initial genome screeningFigure 1
95% confidence regions for the 20 GEs that pass the initial genome screening. For each plot, the horizontal axis 
gives the name of each gene. The vertical axis gives the length of the corresponding chromosomes, while the line segments in 
the graph display the CRs on each chromosome. GEs with CRs on only one chromosome are plotted with black color, while 
those with CRs spanning multiple chromosomes are color-coded for easier identification.
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lower coverage probability than their nominal coverage
probability. Using a bootstrap approach to obtain less
biased estimates [11] may help moderate the effect of this
bias. However, Papachristou and Lin [7] showed that in
the case of binary traits, even though the genetic parame-
ters may be biased, the true coverage of the resulting CSI
intervals stays above their nominal level. This behavior is
partially due to the fact that the CRs are constructed after
the preliminary analysis gives strong signal in the region,
thereby increasing the chances of the interval to capture
the identified putative locus [7]. We do anticipate the CSI-
QTL procedure to experience similar behavior as in the
case of binary traits, but more investigation is needed to
substantiate this claim.

Finally, throughout this current paper we assumed the
existence of at most one trait contributing locus on the
region/chromosome identified from the preliminary anal-
ysis, and used our proposed method to construct a CR for
its true location. If this assumption is violated, the cover-
age probability of the resulting interval is not guaranteed
to be close to the nominal value for any of the putative
trait loci in the region. In fact, the actual coverage of the
derived CR would depend on both the distance between
the trait loci and their relative contribution to the quanti-
tative phenotype [12]. An extension of our proposed
method that accommodates joint localization of multiple
loci would be of great interest and we intend to explore
such approaches in the future.
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