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Abstract
Background: Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms,
the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference
to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known
nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the
complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify
putative NCR genes and to discard uninteresting genes.

Results: We present a machine learning approach where the identification of putative NCR genes
in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem.
Classifiers predict whether genes are NCR-sensitive or not from a large number of variables
related to the GATA motif in the upstream non-coding sequences of the genes. The positive and
negative training sets are composed of annotated NCR genes and manually-selected genes known
to be insensitive to NCR, respectively. Different classifiers and variable selection methods are
compared. We show that all classifiers make significant and biologically valid predictions by
comparing these predictions to annotated and putative NCR genes, and by performing several
negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR
genes identified in three genome-wide experimental and bioinformatics studies.

Conclusion: These results suggest that our approach can successfully identify potential NCR
genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is
drastically reduced.
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Background
Nitrogen is an essential nutrient for all life forms. The
emergence of cells able to transport, catabolize and syn-
thesize a wide variety of nitrogenous compounds has thus
been favored by evolutionary selective pressure [1]. As a
consequence, the yeast Saccharomyces cerevisiae can use
almost 30 distinct nitrogen-containing compounds [1].

Like most unicellular organisms, yeast transports and cat-
abolizes good nitrogen sources in preference to poor ones.
Nitrogen catabolite repression (NCR) refers to this selec-
tion mechanism [1,2]. More specifically, NCR inhibits the
transcriptional activation systems of genes needed to
degrade poor nitrogen sources [2]. All known nitrogen
catabolite pathways are regulated by four regulators
(Gln3, Gat1, Dal80, and Deh1) [3]. The ultimate goal is to
infer the complete nitrogen catabolite pathways.

In this context, bioinformatics approaches offer the possi-
bility to identify a relatively small number of putative
NCR genes [1,2,4]. Hence, biologists need only to test a
small number of "promising" candidates, instead of test-
ing all genes, saving time and resources.

In this paper, we extend a machine learning approach [5]
which has been successfully used for inferring putative
NCR genes [1]. This method formulates the identification
of putative NCR genes as a supervised two-class classifica-
tion problem.

Compared to [1], we consider different variables. Instead
of simply considering the number of occurrences of
motifs that are over-represented in the upstream non-cod-
ing sequences of NCR genes, we consider a wide range of
properties related to the GATA motif. This motif is impor-
tant because it is recognized by the GATA family transcrip-
tion factors (see [1] and references therein), which are the
transcriptional regulators of NCR in Saccharomyces cerevi-
siae.

As in [1], the positive training set is composed of anno-
tated NCR genes. Concerning the negative training set, we
follow a different approach. Instead of randomly selecting
genes in the yeast genome, we use a set composed of man-
ually-selected genes known to be insensitive to NCR.
Hence, our approach is less computationally expensive.

We compare three state-of-the-art classifiers, namely naive
Bayes, k-nearest-neighbors, and support vector machine.

Given the high dimensionality of the data, we use a wrap-
per variable selection technique (as in [1]), and a filter
approach, to improve the classifiers' performance and
enhance interpretability.

The remainder of the paper is organized as follows. In the
next section we first detail our approach by describing the
training sets, defining the variables and presenting the
classifiers and variable selection methods. Subsequently,
we present the correction method we apply to the poste-
rior probabilities returned by the classifiers. This is fol-
lowed by the assessment of the classifiers' performance,
the validation of the inferred putative NCR genes, and the
analysis of the best ranked variables.

Methods
Two-class classifier
The classifier takes as input a data matrix containing n
rows (one per gene) and p columns (one per variable).
The n genes constitute the samples. The p variables reflect
properties of the occurrences of the GATA motif in the
upstream non-coding sequences of the yeast genes (see
Section Definition of variables below). Hence, each variable
is a n-dimensional vector. The classifier is trained on a
number nt <<> n of positive and negative training sam-
ples, i.e. genes that are known to be NCR-sensitive and
insensitive, respectively. The trained classifier is then used
to make predictions for genes not used in the training
phase.

Training sets
As a positive training set, denoted by ANCR, we use 37 of
the 41 genes previously annotated as NCR-responding
[1]. Four genes are discarded because none of them were
identified as NCR-responding in any of the three genome-
wide experimental and bioinformatics studies described
in [1,2,4]. The negative training set, denoted by NNCR, is
composed of 89 manually-selected genes, known to be
insensitive to NCR, most of which being involved in
house-keeping cellular functions unrelated to nitrogen
metabolism.

Definition of variables
The promoter regions of NCR target genes typically con-
tain several 5'-GATA-3' core sequences, which we will refer
to as GATA boxes, recognized by the GATA family tran-
scription factors (see [1] and references therein). Hence,
the variables we define focus on the GATA boxes in the
upstream non-coding sequences of the yeast genes.

Since the variables rely on the availability of the upstream
non-coding sequences, we retrieved them for all yeast
genes over 800 base pairs (bp) upstream from the start
codon using the collection of software tools provided by
the web resource Regulatory Sequence Analysis Tools
(RSAT), available from http://rsat.ulb.ac.be/rsat/[6].
When the upstream open reading frame (ORF) is closer
than 800 bp, a shorter sequence is retrieved to discard
coding sequences.
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We now give a brief description of the 585 variables (see
also Table 1 for a summary).

Number of GATA boxes
As illustrated in Figures 1 and 2, the annotated NCR genes
(ANCR) are characterized by a relatively large number of
GATA boxes compared to genes know to be insensitive to
NCR (NNCR). We therefore define a variable NUM which
counts the number of GATA boxes in the upstream non-
coding sequences.

GATA gap
Further, we note that GATA boxes often come in pairs sep-
arated by only few bp. We therefore define 11 variables
related to the number of bp separating two consecutive
GATA boxes in the upstream non-coding sequences,
which we refer to as a GATA gap. The variables 1-GAP, 2-
GAP, 3-GAP and B-GAP measure the first, second and
third smallest, and biggest GATA gaps, respectively. The
variables M-GAP, MI-GAP and SD-GAP measure the
mean, median and standard deviation of all GATA gaps,
respectively. Finally, the variables i-MINDIST, i = 2,..., 5,
measure the minimum number of bp spanning over i
GATA boxes.

k-mers
When searching for over-represented motifs in the
upstream non-coding sequences of ANCR genes, it
appears that variants of GATA boxes are relatively fre-
quent, as for example the following motifs: GATAAG and
GATAAH. Hence, we define the variables UP-i-MER (i = 1,
2, 3), DOWN-i-MER (i = 1, 2, 3) and GAP-i-MER (i = 1, 2)
that count the following k-mers, respectively: N{1,
i}GATA, GATAN{1, i} and N{1, i}GATAN{1, i}, where
N{1, i} is a motif of length comprised between 1 and i,
and where N represents any nucleotide (A, C, G or T).
There are respectively 84 (= 4 + 42 + 43), 84 and 400 (= 42

+ 2 × 43 + 44) variables N{1, i}GATA, GATAN{1, i} and
N{1, i}GATAN{1, i}.

Positions of GATA boxes
Finally, we define 5 variables relative to the positions of
the GATA boxes in the upstream non-coding sequences.
The position of a GATA box is defined as the number of
bp separating its first bp from the start codon of the gene.
The variables F-POS and L-POS measure the positions of
the first (i.e., the closest to the start codon) and of the last
(i.e., the farthest from the start codon) GATA boxes,
respectively. The variables M-POS, MI-POS and SD-POS
measure the mean, median and standard deviation of the
positions of all GATA boxes, respectively.

Classifiers
We compare three classifiers, namely naive Bayes (NB)
[7], k-nearest-neighbors (KNN) [7], where leave-one-out
error is used to choose the number of neighbors, and lin-
ear kernel support vector machine (SVM) [8].

Variable selection
Because of the high-dimensionality of the classification
task, i.e., the number of variables is greater than the
number of samples, we compare two variable selection
methods to improve prediction performance and enhance
interpretability.

First, we use a filter method [9] based on the Gram-
Schmidt orthogonalization procedure [8] where the
number of selected variables is determined according to
leave-one-out cross-validation [10]. The ranking of varia-
bles through orthogonalization has many interesting fea-
tures: it is computationally fast, it takes into account the
collinearity between variables (i.e., if two variables are
almost collinear in observation space, the fact that one of
them is selected will tend to drive the other to a much
lower rank in the list) and it allows an incremental con-
struction of the model, so that training can be terminated
without using all variables [11]. Although this method
assumes linearity and is based on the minimization of a
squared error loss (which is not always the most appropri-
ate for classification), it gives relatively good results for
classification tasks [11].

Table 1: Abbreviations and short descriptions of variables.

Abbreviation Description

NUM Number of GATA boxes
1-GAP, 2-GAP, 3-GAP, B-GAP First, second and third smallest, and biggest GATA gaps
M-GAP, MI-GAP, SD-GAP Mean, median and standard deviation (sd) of all GATA gaps
i-MINDIST (i = 2,..., 5) Minimum number of bp spanning over i GATA boxes
UP-i-MER (i = 1, 2, 3) N{1, i}GATA
DOWN-i-MER (i = 1, 2, 3) GATAN{1, i}
GAP-i-MER (i = 1, 2) N{1, i}GATAN{1, i}
F-POS, L-POS Positions of the first and of the last GATA boxes, resp.
M-POS, MI-POS, SD-POS Mean, median and sd of the positions of all GATA boxes
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GATA boxes in the upstream non-coding sequences of ANCR genesFigure 1
GATA boxes in the upstream non-coding sequences of ANCR genes. Graphical map of the GATA boxes in the 
upstream non-coding sequences of ANCR genes generated with RSAT [6].
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GATA boxes in the upstream non-coding sequences of NNCR genesFigure 2
GATA boxes in the upstream non-coding sequences of NNCR genes. Graphical map of the GATA boxes in the 
upstream non-coding sequences of NNCR genes generated with RSAT [6].
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Second, we use a wrapper method [12] consisting of a for-
ward stepwise procedure where the prediction perform-
ance is assessed by means of stratified 10-fold cross-
validation [8]. The performance measure used is the bal-
anced error rate (BER, see Section Results and Discussion
below for its definition) and the threshold on the cor-
rected posterior probability (see next section) is 0.5 By
using the prediction performance of a given learning
machine to assess the relative usefulness of subsets of var-
iables, wrappers offer a simple and powerful way to
address the problem of variable selection [9,12]. A greedy
search strategy, such as forward selection, is both compu-
tationally advantageous and robust against overfitting [9].

Posterior probability correction

The classifiers provide estimates of the posterior probabil-
ities that rely on the prior probabilities of the training set.
Unfortunately, these prior probabilities do not reflect the
expected prior probabilities of the target classes. There-
fore, we adjust the posterior probabilities returned by the
classifiers with respect to new prior probabilities by Bayes'
theorem [13]. These new priori probabilities are chosen
according to prior biological knowledge: more or less 200
genes are expected to be targets of NCR [1]. Hence, we set

the prior probability of a gene to be target of NCR to ,

where n = 5869 is the total number of yeast genes consid-
ered.

Results and discussion
Validation
We assess the quality of the variable selection methods
and classifiers through leave-one-out cross-validation. We
use two performance measures:

• The balanced error rate (BER), defined as the average of
the errors on each class. The threshold on the corrected
posterior probability is 0.5. Results are shown in the
"BER" column of Table 2. The best combinations of vari-
able selection method and classifier, i.e., those having a
BER not significantly higher than the lowest BER accord-

ing to McNemar's test [14] with P-value < .05, are marked
with an asterisk (*).

• The area under the receiver operator characteristic
(ROC) curve (AUC). The use of ROC curves is recom-
mended when evaluating binary decision problems in
order to avoid effects related to the chosen threshold on
the posterior probabilities [15]. Results are shown in the
"AUC" column of Table 2.

Extending the "gold standard"
We used the ANCR and NNCR sets as a "gold standard" in
the validation step (through leave-one-out cross-valida-
tion since these sets are also used to train the classifiers).
We now extend, in the validation step (but not in the
training phase), the set of "true" NCR genes with the puta-
tive NCR genes identified in three genome-wide experi-
mental and bioinformatics studies [1,2,4]. Hence, the
"true" NCR genes in the validation step are composed of
the ANCR genes and the genes provided by the three
experimental studies.

The quality of the predictions are evaluated according to
the AUC. Results are shown in the "AUCext" column of
Table 2.

Negative control
Given the scarcity of the data and the risk of the variable
selection procedure to overfit the selected variables to the
training set, we perform a negative control to determine
whether the results are significant or not. We empirically
estimate the random rate of correct classification by run-
ning the same procedure but with randomized data sets
obtained by randomly sampling the labels of the training
set. Results are shown in the "negative control" columns
of Table 2. The values reported are the mean and standard
deviation over 10 repetitions.

Gene set comparisons
For each combination of variable selection method and
classifier, we compare the set of predicted NCR genes,
obtained with a threshold of 0.5 on the corrected poste-

200
n

Table 2: Performance assessment. VS and CLASS stand for variable selection method and classifier, respectively.

Negative control

VS CLASS BER AUC AUCext BER AUC AUCext

Filter NB 0.31 0.93 0.95 0.49 ± 0.022 0.50 ± 0.072 0.63 ± 0.023
KNN 0.18 0.90 0.91 0.51 ± 0.021 0.51 ± 0.077 0.34 ± 0.088
SVM 0.13* 0.93 0.98 0.48 ± 0.060 0.50 ± 0.097 0.67 ± 0.026
NB 0.24 0.95 0.91 0.49 ± 0.054 0.50 ± 0.130 0.48 ± 0.016

Wrapper KNN 0.20 0.97 0.66 0.48 ± 0.045 0.52 ± 0.100 0.41 ± 0.073
SVM 0.13* 0.95 0.88 0.47 ± 0.066 0.58 ± 0.130 0.58 ± 0.042
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rior probability, with each of the three sets identified in
the three aforementioned studies [1,2,4], respectively.
More specifically, we compute for each combination of
variable selection method and classifier, and for each set,
the F-measure defined as the harmonic mean of the preci-
sion and recall quantities:

The precision quantity measures the fraction of true posi-
tives among those inferred as positive:

and the recall quantity measures the fraction of true posi-
tives among all "true" NCR genes:

Results are shown in Table 3.

Negative control
To assess the significance of the overlap between two sets,
and to account for the artificial increase in the overlap that
occurs with increasing number of predicted NCR genes
(i.e., with decreasing threshold on the corrected posterior
probability), we also compute overlapping P-values on
the basis of the cumulative distribution function of the
hypergeometric distribution [1]. Results are shown in
Table 3.

Variable selection
The improvement of prediction performance with varia-
ble selection is confirmed by the number of variables
returned by the wrapper approach. Indeed, for all classifi-

ers, the number of selected variables is small (in the order
of tens) compared to the total number of variables (585).

The top selected variables are k-mers (see UP-i-MER,
DOWN-i-MER and GAP-i-MER in Table 1). More specifi-
cally, the following motifs were (almost) always selected:
GATAAG, TAGATAA, GATAGG and GTAGATA. The
GATAAG motif is known to be potentially relevant for the
NCR regulation [3,16]. Analysis of the other motifs is
ongoing.

Conclusion
We proposed a machine learning approach where the
identification of putative NCR genes in the yeast Saccharo-
myces cerevisiae is formulated as a supervised two-class
classification problem.

Based on almost 600 variables, we showed that all classi-
fiers made significant and biologically valid predictions
by comparing the predictions to annotated and putative
NCR genes, and by performing several negative controls.
In particular, the inferred NCR genes significantly overlap
with putative NCR genes identified in three genome-wide
experimental and bioinformatics studies [1,2,4].

These results suggest that our approach can successfully
identify potential NCR genes. Hence, the dimensionality
of the problem of identifying all genes involved in NCR is
reduced, saving time and resources.

Although all classifiers produced significant results,
McNemar's test suggests that the linear kernel support vec-
tor machine performs best (independently of the variable
selection method).

In order to thoroughly evaluate the proposed approach,
the putative NCR genes identified will be tested in vitro
for NCR-sensitivity. We also plan to extend this approach
to other yeast species to study the evolution of NCR.
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Table 3: Gene set comparisons. VS and CLASS stand for variable selection method and classifier, respectively.

F-measure (P-value)

VS CLASS Bar-Joseph et al., 2003 [4] Godard et al., 2007 [1] Scherens et al., 2006 [2]

Filter NB 0.05 2.9 × 10-16 0.09 (3.5 × 10-7) 0.06 (2.4 × 10-13)
KNN 0.06 (9.4 × 10-9) 0.09 (4.8 × 10-5) 0.07 (1.1 × 10-7)
SVM 0.11 (1.5 × 10-13) 0.15 (9.0 × 10-10) 0.14 (8.2 × 10-14)

Wrapper NB 0.07 (9.1 × 10-11) 0.11 (7.7 × 10-18) 0.08 (4.3 × 10-16)
KNN 0.12 (7.7 × 10-14) 0.20 (7.0 × 10-28) 0.16 (5.2 × 10-26)
SVM 0.13 (8.9 × 10-11) 0.16 (7.2 × 10-14) 0.13 (2.6 × 10-11)
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