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Abstract

Over the past decade, genetic analysis has shifted from linkage studies, which identify broad regions
containing putative trait loci, to genome-wide association studies, which detect the association of a
marker with a specific phenotype. Because linkage and association analysis provide complementary
information, developing a method to combine these analyses may increase the power to detect a
true association. In this paper we compare a linkage score and association score test as well as a
newly proposed combination of these two scores with traditional linkage and association methods.

Background
Improvement in genotyping technologies has led to great
advances in the quest to map genes influencing complex
traits. In the late 1980s came linkage studies in family
samples that identified broad regions containing putative
trait loci. Recently, dense single-nucleotide polymorph-
ism (SNP) chip technology has resulted in genome-wide
association analysis, where the genome is queried for
association with a specific phenotype. The high number
of SNPs run (from 300,000 to >1,000,000) enables
relatively thorough coverage of the genome, but also
greatly increases the chance of false-positive results. A low
p-value in the range of 10-8 is often used to declare
genome-wide significance and finding small to moderate
associations remains difficult. One advantage of

association analysis is it can be carried out in samples of
unrelated individuals, which may be easier to recruit. On
the other hand, family samples provide extra information
about segregation of the phenotype, and both linkage and
association analysis may be performed when genotype
and phenotype data are available on family members.

Variance-component analysis [1] is a commonly used
approach for performing linkage analysis of quantitative
traits. Its great flexibility to accommodate extended
pedigrees is offset by increased type I error of the
likelihood-ratio test (LRT) when the trait is not normally
distributed [2]. An alternate approach consists of using
the efficient score statistic for linkage analysis standar-
dized by its variance-computed conditional on the
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observed phenotype [3], which renders it robust to
departure from multivariate normality.

Population-based methods can be applied to family
samples provided that familial correlation is accommo-
dated and there is no population stratification (or
analyses are performed after adjustment for population
stratification). Linear mixed-effect models are particu-
larly well suited for association analysis of quantitative
traits in family samples. The genotype effect and
additional covariates are modeled as fixed effects while
familial correlation is accommodated with a random
effect with the covariance structure depending on the
degree of relatedness between individuals. LRTs may be
applied to determine the genotype-phenotype associa-
tion. Alternatively, an efficient score statistic for associa-
tion analysis with the variance computed conditional on
the observed phenotype may offer a robust option
against departure from the normality assumption [4].

The objectives of this paper are two-fold: first, we
compare the LRT with conditional score statistics for
both linkage and association analyses using the Genetic
Analysis Workshop 16 simulated Framingham Heart
Study dataset (Problem 3). Second, we explore whether a
combination of the linkage and association score
improves power to detect associated SNPs.

Methods
Framingham Heart Study sample
The subset of simulated Framingham Heart Study
samples analyzed in our report consists of 736 families
and 381 unrelated individuals. The families range in size
from 2 to 291 participants with available genotypes and
phenotypes, for a total of 6372 individuals.

Initial data cleaning was performed using the software
PLINK [5,6] based on call rate and sex. We removed
subjects with a homozygosity rate on the X chromosome
between 20% and 80% indicating ambiguous genetic
sex, subjects with a conflicting reported and genetic sex,
or subjects with a call rate <97%. This resulted in the
exclusion of 104 participants.

Lipid-related phenotypes were available at three exams
for each participant. To evaluate methods robust to
departure from normality, we concentrated on low-
density lipoprotein (LDL) and triglyceride levels (TG)
levels because of their skewed distributions. We analyzed
each trait measured at the first exam, but also averaged
each trait over the three exams.

Chromosome selection
Chromosome 11 was chosen because a group of 39
polygenes influencing high-density lipoprotein (HDL)

clustered in the range of 110 Mb to 134 Mb and because
of the presence of two major genes, one influencing LDL
and the other influencing TG. Chromosome 22 was
selected for ease of computation and because it harbors a
major gene explaining 1% of the LDL variance.

Linkage analysis: marker selection
For linkage analysis, we selected markers with low
linkage disequilibrium, which may bias identity-by-
descent (IBD) estimates when parental information is
unavailable [7]. We used PLINK [5,6] to select markers
on chromosomes 11 and 22 with call rate ≥ 98%, minor
allele frequency of ≥ 35%, a Hardy-Weinberg equili-
brium p-value ≥ 0.05, and a r2 < 0.04. Mendelian
transmission errors were detected and corrected using
the program PEDCHECK [8].

Linkage analysis: variance-component model
The basic variance-component model assumes that the
vector of phenotype in the kth family, Y, has a multi-
variate normal distribution with mean E(Y|X) = μX = μ +
bX and covariance matrix:
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quantitative trait locus, and σ A
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polygenic and residuals variance components, respec-
tively; πtij is the proportion of alleles shared IBD by
relatives i and j at genome location t; and jij is the
kinship coefficient. The covariance matrix unconditional
on the IBD (Σ) is obtained by setting πtij = jij in the
expression for Σπ.
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where the sum is taken over all N pedigrees. To test the

null hypothesis of no linkage (H0: σ a
2 = 0), one can

use the following LRT:
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logarithm of odds (LOD) score is computed by dividing
this LRT statistic by twice the natural logarithm of 10. The
same hypothesis can be tested using the efficient score
statistic, which is obtained by taking the first derivative of

the log likelihood ratio with respect to σ a
2 , evaluated at

σ a
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, where Aπ is the matrix of

centered IBD and W = (Σ-1(Y - μX)(Y- μX)’-I)Σ
-1 with

elements wij. The squared of the efficient score is
standardized by an estimate of the variance conditional
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on the observed phenotypes tomake it robust to violation
of the normality assumption [3,8].

Association analysis
The linear mixed-effects model to test for association
analysis is very similar to the variance-component
model, with the exception that the genotype effect is
included in the mean rather than in the covariance
matrix: E(Y| g, X) = μ + bX + gg, where g is the coded
genotypes. The covariance unconditional on the IBD
proportions, Σ, is typically used, although one could
easily substitute Σπ at the expense of added computation
complexity. The null hypothesis of no association H0: g =
0 is typically tested using a LRT. Alternatively, the
efficient score test may be constructed to test for
association. The efficient score statistic for association

reduces to γ μ= ( )′ −( )−∑ Y g E g
k

- X Σ 1 ( ) , and the

estimate of variance, conditional on the observed
phenotypes, is

E Y Y Y Var g
k

[ | ] ( )γ μ μ2 1 1= ( )′ ( )− −∑ - -X XΣ ΦΣ , where F

is the matrix of kinship coefficients. We refer to this
statistic as the “conditional score” for association [9].

Combined linkage and association score
The conditional association score and our implementa-
tion of the linkage score are uncorrelated under the null
hypothesis of no linkage and no association [10].
Therefore, we summed the chi-square form of these
two statistics to produce a combined linkage and
association statistic. The asymptotic null distribution of
the combined statistic is an equally weighted mixture of
chi-square with 1 and 2 degrees of freedom (df) for the
additive genetic model and a chi-square mixture with 2
and 3 df for the general 2-df genetic model.

Evaluation of methods
We computed the LRT and association-conditional score
statistics using an additive genetic model and a general
2-df genetic model for each SNP. For all models we
adjusted for sex and age, or average age in the case of
averaged phenotypes. We compared the association
statistics in terms of type I error and power. To determine
type I error, we selected SNPs with a call rate above 95%,
a HWE p-value above 10-6, and a low r2 (< 0.01) with all
polygenes and major genes on chromosomes 11 and 22.
We calculated power as the proportion of significant
major gene association detected over all 200 phenotype
replicates.

We computed multipoint IBD probabilities using the
software LOKI [11], making full use of the entire

pedigree and all available genotypes. We used the
software R [12] to implement the score statistics and
the KINSHIP [13] package in R to compute the LRT
statistic.

Results
Figure 1 presents the linkage signals produced for the
LRT and linkage-conditional score for Simulations 1-5.
The maximum LOD score of 3.2 for the score statistic
(LRT LOD = 2.7) was attained for LDL at Visit 1,
Simulation 1 (Figure 1a). The LOD score curve for the
average LDL over the three visits has a similar shape,
with reduced evidence for linkage in Simulation 1
(maximum linkage score = 1.6 and maximum LRT
LOD= 2.1; results not shown). The maximum LOD
score for TG average was 1.9 in Simulation 5 (maximum
LRT LOD = 2.3; Figure 1b), but was much reduced for TG
at Exam 1 (maximum LOD score = 0.6; maximum LRT
LOD = 0.8).

As seen in Table 1, the type I error for association
analysis assuming the additive model is comparable for

Figure 1
LDL Visit 1: linkage statistics (a) and TG average:
linkage statistics (b). LOD score on chromosome 11:
linkage score statistic (solid lines) and LRT (dashed lines).
Simulation 1, black; 2, red; 3, green; 4, dark blue; 5, light blue.
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the association-conditional score and the LRT. There is a
negligible increase in type I error for the general 2-df
LRT, while the increase is moderate for the conditional
score. Similar trends for type I error are seen for average
LDL and TG at Visit 1 (data not shown).

Power to detected major SNPs at a = 5% is presented in
Figure 2, and is similar between the LRT, association-
conditional score, and combined conditional score when
looking across the same genetic model. Assuming an
additive genetic model, all statistics have very low power
to detect the association between TG levels and
rs603446, an over-dominant SNP for which carriers of
the heterozygote genotypes have higher simulated TG
levels. All of the general 2-df model statistics have much
higher power at a = 5% to detect this association as
shown in Figure 2; there was minimal power (<10%) at a
more stringent significance level of a = 10-8 (data not
shown). Power to detect association between rs901824
and LDL ranged between 60% and 80% at a = 5%, but
power was 0 for all statistics at a = 10-8 (results not
shown). All methods achieved 100% power to detect
SNP rs2294207, an additively acting SNP on chromo-
some 22 explaining 1% of the LDL variation with either
LDL phenotypes (data not shown).

Discussion
Despite selecting phenotypes that violated the normality
assumption, type I error rates for the additive associa-
tion-conditional score and LRT statistics were not
inflated, but slight type I error inflation was observed
for the 2-df LRT statistic and moderate inflation for the
2-df association-conditional score. The type I error rate
inflation for the 2-df statistics is most likely due to a
violation of asymptotic assumptions caused by SNPs
with low cell counts. Note that filtering by MAF less
than 10% lowers the false-positive rate for both 2-df
statistics.

In our analyses, all additive statistics failed to detect the
association between TG levels and rs603446, a SNP with
a non-additive effect. This result suggests, as do Lettre
et al. [14], that the additive model has low power to
detect associations for genetic models in which the
association is limited to only one genetic group, such as
recessive or over-dominant genetic models. Although
power is lost when the general 2-df model is used to
detect additive SNPs, the reduction is much smaller than
the power reduction when using the additive model to
detect the over-dominant SNP. Because the genetic
model of a SNP is always unknown a priori, the general
2-df model seems to be the better model to detect an
association.

Including the information from the linkage analysis
using the combined conditional score did not consis-
tently increase the power to detect an associated SNP.
However, despite the lack of a large linkage signal and
even though the combined conditional score statistic
uses an extra degree of freedom, the power remained
fairly constant when using the combined conditional
score compared with the LRT and the association-only
conditional score. The minimum LOD score needed at
a = 0.05 to accommodate the extra degree of freedom
used by the combined conditional score is 0.467 for the
additive model and 0.396 for the general 2-df model.
The percent of iterations that reached the minimum
threshold ranged from 4.0% for the additive model for
visit 1 TG levels at SNP rs603446 to 31.5% for the
general 2-df model for average LDL at SNP rs901824.
This suggests that a larger linkage signal or a more
efficient combination of the conditional association and
linkage scores may ultimately increase power.

A notable difference between the LRT and the condi-
tional score for association was computation time.
Performing the analysis for a total of 35,979 SNPs on
chromosomes 11 and 22 using a single processor would

Table 1: Type I error

LDL—Visit 1 TG—Average

0.050 0.010 0.0010 0.00010 0.050 0.010 0.0010 0.00010

LRT (additive)
MAF>1% 0.048 0.012 0.0019 0.00010 0.051 0.012 0.0013 0.00015
MAF>10% 0.047 0.012 0.0018 0.00013 0.050 0.012 0.0010 0.00013

LRT (general 2 df)
MAF>1% 0.053 0.012 0.0012 0.00031 0.055 0.015 0.0039 0.00191
MAF>10% 0.050 0.011 0.0011 0.00025 0.050 0.012 0.0009 0.00013

Association conditional score (additive)
MAF>1% 0.045 0.010 0.0013 0.00005 0.050 0.010 0.0012 0.00010
MAF>10% 0.044 0.009 0.0014 0.00006 0.048 0.010 0.0009 0.00013

Association conditional score (general 2 df)
MAF>1% 0.065 0.016 0.0029 0.00118 0.073 0.023 0.0060 0.00282
MAF>10% 0.061 0.014 0.0013 0.00019 0.067 0.017 0.0021 0.00031
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take more than 16 hours using the LRT and less than an
hour using the association-conditional score. The com-
putation times for the linkage analysis were more
comparable. Once the IBD was computed, the LRT
using SOLAR took about 45 minutes to scan chromo-
some 11, while the linkage-conditional score took about
3.25 hours. Despite the longer linkage computation
time, the combined conditional score was computed
much faster than the LRT.

Although more research is needed, conditional score
analysis provides an interesting possibility of a gain in
power by combining linkage information using the
combined conditional score. Regardless, the conditional
score for association provides a fast and comparable
alternative to LRTs for analysis of family data.
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HDL: High-density lipoprotein; IBD: Identity by descent;
LDL: Low-density lipoprotein; LOD: Logarithm of the
odds; LRT: Likelihood ratio test; SNP: Single-nucleotide
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