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Abstract

Established loci for rheumatoid arthritis (RA), including HLA-DRB1 and PTPN22, do not fully
account for the genetic component of susceptibility to the disease. One possible source of as yet
undiscovered susceptibility genes are those mediated through effects of rare variants. We present a
novel method for gene-based genome-wide scans of whole-genome association (WGA) data to
identify accumulations of rare variants associated with disease. We apply our method to WGA SNP
genotype data obtained from 868 RA cases and 1194 controls. Our results highlight novel putative
RA susceptibility genes that have not previously been identified in large-scale WGA studies.

Introduction
The genetic contribution to susceptibility to rheumatoid
arthritis (RA) is well established, with a sibling risk ratio
of the order of 5 to 10 [1]. The prevalence of the disease
in Caucasians is ~0.8%, the risk being three times higher
in females than males [2]. The most recognized RA
associations are with haplotypes of the HLA-DRB1 locus
and variation in PTPN22, both of which have been
widely replicated [3-5]. However, these two associations
explain only half of the familial aggregation of the
disease. More recently, large-scale whole-genomic asso-
ciation (WGA) studies have suggested a number of novel
RA susceptibility loci including variation close to both
the alpha and beta chains of the IL2 receptor (IL2RA and
IL2RB), a single-nucleotide polymorphism (SNP) in

linkage disequilibrium with variation at the TRAF1-C5
locus, two independent signals on chromosome 6q23,
and a female-specific effect on chromosome 7q32 [6-8].
However, despite these successes, a large proportion of
the genetic component of RA susceptibility remains
unexplained.

Large-scale WGA studies of thousands of individuals are
well powered to detect the modest genetic effects we
expect for complex diseases, provided that the functional
variants are common (minor allele frequency (MAF)
greater than 1-5%, depending on the sample size of the
study). Although a number of common variants for
complex diseases have now been identified and repli-
cated, it seems unlikely that the common-disease,
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common-variant hypothesis is all encompassing.
Instead, some proportion of genetic susceptibility to
complex diseases may be attributed to rare variants,
potentially acting together within the same functional
unit, with a modest joint effect. Such associations
cannot be identified through traditional single-SNP
analyses because rare variants are poorly captured by
WGA genotyping products [9], and are thus under-
powered without sample sizes of tens of thousands of
individuals which may be practically or financially
infeasible.

Here, we used SNP genotype data obtained from 868 RA
cases and 1194 unaffected controls of Northern Eur-
opean ancestry using the Illumina HumanHap 550 k
BeadChip to identify genes containing accumulations of
rare variants associated with disease susceptibility. The
log-odds of disease were modeled as a linear function of
the proportion of rare SNPs within a gene at which
individuals carry at least one copy of the minor allele
within a logistic regression framework. Gene-based
genome-wide scans for association with RA were
performed, fully accounting for the underlying popula-
tion structure, both with and without adjustment for the
effects of the HLA-DRB1 locus, and allowing for sex-
differentiated effects.

Methods
Consider a sample of unrelated cases and controls typed
for SNPs in a gene or small genomic region. Let ni denote
the number of rare SNPs (as defined by some pre-
determined MAF threshold) for which the ith individual
has been successfully genotyped, and let ri denote the
number of these SNPs at which they carry at least one
copy of the rare variant. We can model the log-odds of
disease of the ith individual in a logistic regression
framework, given by
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In this expression, xi denotes a vector of covariate
measurements for the ith individual, with corresponding
regression coefficients b. The parameter l is the log-odds
ratio for an individual carrying a full complement of rare
variants compared with an individual carrying none.
Thus, we construct a likelihood-ratio test of association
of an accumulation of rare variants with disease by
comparing the maximized likelihoods of two models via
analysis of deviance: i) the null model where l = 0; and
ii) the alternative model where l is unconstrained. The
contribution of the ith individual to the likelihood is
weighted by ni to allow for differential call rates between
samples.

Results
Genotypes were reported for 544,892 autosomal and
X-chromosome SNPs. A total of 35,760 SNPs were
excluded from analysis through application of quality
control (QC) filters of low call rate (<97%) and extreme
deviation from Hardy-Weinberg equilibrium (study-
wide exact p < 5.7 × 10-7, except in females only for
X-chromosome SNPs). To account for population
structure, identity-by-state metrics were calculated for
each pair of individuals for every fifth SNP passing QC
filters with study-wide MAF greater than 1%, to mini-
mize the effects of linkage disequilibrium, and excluding
the MHC to eliminate any bias due to the effect of HLA-
DRB1. Application of multi-dimensional scaling techni-
ques to the resulting matrix of pair-wise identity-by-state
statistics generated five axes of genetic variation asso-
ciated with RA (p < 0.001) after adjustment for sex as a
covariate. Genes and their boundaries were determined
from the UCSC known genes database (build 35),
extended by 50 kb up- and down-stream to incorporate
additional functional elements and the promoter region.
Each gene was considered independently, irrespective of
any overlap in their boundaries. A total of 29,073 rare
variants, defined to have a study-wide MAF of less than
5%, were assigned to at least one of 25,501 genes, and
thus taken forward for analysis.

Figure 1a presents results of a gene-based genome-wide
scan of association of RA with accumulations of rare
variants, adjusted for sex and axes of genetic variation as
covariates in the logistic regression model, as a function
of gene location. Unsurprisingly, the strongest signals of
association were observed for accumulations of rare
variants in genes in the major histocompatibility
complex (MHC), which are likely to be in linkage
disequilibrium with HLA-DRB1 risk haplotypes. The
strongest signals of association outside of the MHC
(p < 10-4) occurred with FRY (furry homolog), PRPS1L1
(phosphoribosyl pyrophosphate synthetase 1-like 1),
and ARNTL (ARNT-like protein 1, brain and muscle),
each containing accumulations of rare variants that
appear to be protective for RA (Table 1).

To account for the effects of the HLA-DRB1 locus, we
repeated our analysis by adjusting for the number of
shared epitope alleles, in addition to sex and axes of
genetic variation, as covariates in the logistic regression
model, the results of which are presented in Figure 1b.
The strongest signal of association (p = 5.4 × 10-6)
occurred within the class III region of the MHC, in two
overlapping genes, PBX2 (pre-B-cell leukemia homeobox
2) and NOTCH4 (Notch homolog 4). These two genes
contained the same three rare variants, jointly occurring
with an odds ratio of 0.08 (95% confidence interval 0.03-
0.24) for an individual carrying a minor allele at all of
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Figure 1
Summary of gene-based genome-wide scans of association of RA with accumulations of rare variants. Each gene-
based test has been adjusted for: (a) sex and five axes of genetic variation; (b) sex, five axes of genetic variation, and the
number of shared epitope alleles to account for the effects of HLA-DRB1. Genes achieving a nominal significance threshold of
p < 10-4 are highlighted in red.

Table 1: Strongest signals of rare variant association with RA (p < 10-4) outside of the MHCa

Rare variants

Gene Chromosome Number Mean MAF (%) Odds ratio (95% CI) p-Value

FRY 13 5 2.6 0.10 (0.03-0.28) 1.4 × 10-5

PRPS1L1 7 1 4.4 0.46 (0.31-0.68) 7.3 × 10-5

ARNTL1 11 1 3.0 0.38 (0.24-0.61) 7.3 × 10-5

aEach gene-based test has been adjusted for sex and five axes of genetic variation to account for population structure.

BMC Proceedings 2009, 3(Suppl 7):S131 http://www.biomedcentral.com/1753-6561/3/S7/S131

Page 3 of 5
(page number not for citation purposes)



these variants, relative to one carrying none, suggesting
them to be protective for RA. This result would indicate
RA association with rare variants within the MHC,
independent of the effect of HLA-DRB1. Outside of the
MHC, the strongest signals of association with RA (p <
10-4) occurred with TRIM58 (tripartite motif-containing
58) and HINT1 (histidine triad nucleotide binding
protein 1), again containing accumulations of rare
variants that appear to be protective for RA (Table 2).

To test for sex-specific effects, we have performed gene-
based genome-wide scans of association with RA within
males and females separately, with and without adjust-
ments for the effects of the HLA-DRB1 locus. Sex-
differentiated tests of association were performed by
summing the deviances obtained across the two sexes,
adjusted for axes of genetic variation. The strongest
signal of association, not identified in the primary
analyses described above, occurred in MYO1B (myosin
1B), containing six rare variants (p = 7.8 × 10-5 without
adjustment for the effects of HLA-DRB1). There is some
evidence of heterogeneity of the effects of accumulations
of rare variants in the gene between the sexes (p = 0.074).
There is a signal of association with RA in females (p =
1.0 × 10-4), but no such effect is seen in males (p = 0.45),
although this may reflect a lack of power due to lower
sample size.

Discussion
We have presented the results of novel methodology for
gene-based genome-wide scans for association of RA
with an accumulation of rare variants. The strongest
signals of association were observed for genes in the
MHC, where an accumulation of rare variants reduces
risk of RA, presumably as a result of linkage disequili-
brium with HLA-DRB1 haplotypes. There are no rare
variants (MAF<5%) on the Illumina HumanHap 550 k
beadchip passing our QC filters in PTPN22. Rare variants
are represented in the other established RA loci (TRAF1-
C5, IL2RA, and IL2RB), but our results do not indicate
any evidence of rare variant effects within these genes.

Our results highlight rare variant associations with RA
within the MHC, independent of the effects of the HLA-
DRB1 locus. Furthermore, a number of novel putative RA

susceptibility genes have been identified outside of the
MHC (p < 10-4), with signals of association at least as
strong as would be observed through application of
traditional single-SNP methods. It is interesting to note
that for all of these genes, accumulations of rare variants
are associated with decreased risk of RA, suggesting them to
be protective. This could reflect the fact that we are able to
identify more rare variants in the larger sample of controls
than cases, and hence that our analysis has greater power
to detect protective associations. We repeated our analyses
using rare variant thresholds of MAF less than 2% and less
than 1%. These analyses highlighted no novel suscept-
ibility genes for RA (p < 10-4), reflecting the scarcity of
variants with MAF less than 2% on the Illumina
HumanHap 550 k Beadchip (just 15,093 SNPs covering
18,447 genes).

Our analyses highlighted associations with a just a single
rare variant in each of the genes PRPS1L1 and ARNTL1.
Application of traditional single-SNP analysis would thus
produce a similar signal of association to that identified
here. However, the advantage of a gene-based analysis is
that there is a lesser burden of multiple testing, so that a
less stringent genome-wide significance level would be
sufficient. The definition of such a threshold is difficult
here because each gene is treated as independent, despite
the fact that many overlap. The results of overlapping
genes will be strongly correlated because they share SNPs
in common, and thus a simple Bonferroni correction for
the number of tests performed will be highly conserva-
tive. Genotypes are more difficult to call at rare variants
than more common SNPs, the distinction between
heterozygotes and rare homozygotes being less transpar-
ent. The QC filters implemented here will exclude the
worst offenders, but careful visual inspection of the
cluster plots of the remaining variants in associated genes
is essential. These two issues highlight the importance of
confirmation of these findings in independent replica-
tion cohorts, or through meta-analysis with other RA
WGA studies, such as that carried out as part of the
Wellcome Trust Case Control Consortium [7]. Ideally,
studies will be performed in the same population
because we expect the spectrum of rare variants to be
more variable that common SNPs between even closely
related populations. In addition, it would be preferable

Table 2: Strongest signals of rare variant association with RA (p < 10-4) outside of the MHC, adjusting for the effects of HLA-DRB1a

Rare variants

Gene Chromosome Number Mean MAF (%) Odds ratio (95% CI) p-value

TRIM58 1 3 1.1 0.04 (0.01-0.18) 3.7 × 10-5

HINT1 5 4 3.0 0.25 (0.13-0.48) 4.6 × 10-5

aEach gene-based test has been adjusted for sex, five axes of genetic variation to account for population structure, and the number of shared epitope
alleles to allow for the effects of HLA-DRB1.
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for samples to be typed using the same technology
because different panels of rare variants appear on
different genotyping products, and are more difficult to
impute across platforms than common SNPs [9].

Analysis of rare variants on WGA genotyping arrays is far
from ideal, given their scarcity and poor coverage by
common SNPs. However, with the increasing availability
of large-scale re-sequencing data, such as that generated
by the 1,000 Genomes Project [10], we are entering an
exciting period for rare variant discovery in which
development of analytical strategies to maximize the
potential of these investments will be of critical
importance.

Conclusion
We have presented the results of an application of a new
method for gene-based genome-wide association of RA
with accumulations of rare variants (MAF<5%). Our
results confirm strong signals of association for genes in
the MHC, and highlight putative novel RA associations
which require follow-up in independent replication
cohorts from the same population.
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