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Abstract

Genome-wide association studies (GWAS) have helped to reveal genetic mechanisms of complex
diseases. Although commonly used genotyping technology enables us to determine up to a million
single-nucleotide polymorphisms (SNPs), causative variants are typically not genotyped directly.
A favored approach to increase the power of genome-wide association studies is to impute the
untyped SNPs using more complete genotype data of a reference population.

Random forests (RF) provides an internal method for replacing missing genotypes. A forest of
classification trees is used to determine similarities of probands regarding their genotypes. These
proximities are then used to impute genotypes of untyped SNPs.

We evaluated this approach using genotype data of the Framingham Heart Study provided as
Problem 2 for Genetic Analysis Workshop 16 and the Caucasian HapMap samples as reference
population. Our results indicate that RFs are faster but less accurate than alternative approaches
for imputing untyped SNPs.

Background
Recently, genome-wide association studies (GWAS) have
expanded our knowledge about genomic variants that
influence susceptibility to complex diseases such as
myocardial infarction [1,2]. One important reason for
this success is the substantial technological progress
enabling the genotyping of up to a million single-
nucleotide polymorphisms (SNPs) simultaneously.
However, with about 15 million known SNPs in the

current Build 129 of dbSNP http://www.ncbi.nlm.nih.
gov/SNP and almost four million of these available in
release 23a from the HapMap project http://www.
hapmap.org, the coverage achieved by direct genotyping
is still far from perfect. Thus, the majority of all known
SNPs in the genome are evaluated only indirectly with
commonly used genotyping platforms. Consequently,
today’s GWAS are usually not able to genotype causal
variants but will detect association with a nearby SNP in
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high linkage disequilibrium (LD). Although this
approach has proved successful in many cases, it is still
likely that a great number of causal variations are yet
undetected and that the power of GWAS could be
increased by performing statistical tests with disease
influencing SNPs directly [3].

One preferred approach to increase the power of GWAS is
to combine data from several studies [4], thus increasing
the sample sizes from thousands to tens of thousands.
However, these meta-analyses of GWAS pose special
problems, such as a limited overlap in genotyped SNPs if
different platforms were used across the studies. A
promising solution is to impute the respective untyped
SNPs using genotype data of the performed study and data
of a similar reference population that has been genotyped
at additional SNPs [5]. As a result, estimated genotypes
may be used to fill in the gaps in the original GWAS and to
increase the overlap between different GWAS.

In our work, we applied the random forests (RF)
imputation approach to untyped SNPs [6]. We evaluate
this method on genotype data of probands of the
Framingham Heart Study provided as Problem 2 for
Genetic Analysis Workshop (GAW) 16.

Methods
Algorithm
RF is a data-mining method that is able to produce
accurate classifiers even when many variables are
observed in relatively few individuals. Furthermore, it
provides estimates of variable importance, generates an
unbiased generalization error estimate, and includes a
technique for estimating missing data. Using its classify-
ing power, we have recently shown that a screening of
SNPs by RF is suitable to detect promising candidate
SNPs in GWAS for complex diseases [7].

A specific feature of RF is the ability to replace missing
values through an iterative process [8]. To use this for
imputation, two essential prerequisites need to be
satisfied. First, each variable must have at least one
non-missing value. This is not fulfilled in presence of
untyped SNPs because all values are missing. Adding
non-missing data of a reference population is a possible
approach to overcome this as described in Algorithm 1
Step 1a. Second, RF needs a variable to classify on
because RF is a supervised learning method. If the data
contain only genotypes, this precondition is not met.
Algorithm 1 Step 1b describes a solution to use genotype
data by enriching it with synthetic data.

Thus, the original method was modified accordingly. The
procedure for imputing missing SNPs comprises several
steps as shown in Figure 1 and proceeds as follows:

Algorithm 1
1) Enrichment of original data
The data is enriched in two successive steps as follows:

a) The original data is merged with a subset of
HapMap [9] genotype data. This subset contains
exactly the SNPs that were typed in the original
data. If one also aims at imputing SNPs that were
not typed at all in the original data, these SNPs
need to be contained in the HapMap subset as
well. The selected HapMap probands have to be
independent from each other and chosen from a
population similar to the probands in the original
data.
b) The data is subsequently modified as follows: to
begin, the original data set that contains only
genotype information is considered as Class 1. A
new synthetic data set with the same number of
probands and SNPs is created and labelled as Class 2.
This synthetic data is created by sampling at random
without replacement from the univariate distribu-
tions of the original data. The sampling is separately
performed for each SNP. Thus, each SNP has the
same univariate distribution as the corresponding
SNP in the original data. The random SNPs of Class 2
are independently distributed and contain no

Figure 1
Flow chart of algorithm 1. Algorithm 1 proceeds as
follows: 1) enrich data; 2) mark missing and undefined
genotypes; 3) roughly replace missing values; 4) grow forest;
5) calculate sample proximities; 6) update former missing
values using proximities; 7) repeat Steps 4-6 several times;
8) extract imputed original data.
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dependency structure [8]. The original data and the
synthetic data are merged into a single data set,
resulting in an artificial two-class data set that can be
used by supervised learning methods. The RF is thus
able to perform unsupervised learning so that
phenotype data is not mandatory [8,10].

2) Labelling
Missing and undefined genotypes are internally
marked with the label MISSING.

3) Rough imputation
Missing values of each SNP are roughly imputed by
its median value. This initial crude imputation is
essential because RF cannot handle missing data [8].

4) Forest growing
A classification forest is grown. The trees are built on
the new data set created in Step 1.

5) Calculate probands’ proximities
An important part of the RF imputation method is
the proximity matrix, which contains the pair-wise
similarities between all pairs of probands. Specifi-
cally, the proximities are determined as follows: first,
they are set to zero. Then, each proband is classified
by all trees in the forest. For each tree, if two
probands are evaluated by exactly the same series of
decision rules, their proximity is increased by one.
A detailed description of decision tree rules and
classification is given in Breiman et al. [11].

6) Updating MISSING genotypes
Genotypes internally marked as MISSING are
re-estimated. The updating is separately performed
for each SNP. The new value is calculated as follows:
at a specific SNP, each proband holds exactly one
genotype value of the set 0, 1, or 2. This also applies
to former missing genotypes that were roughly
imputed or updated during a previous iteration. For
each proband with a genotype marked as MISSING,
the new genotype is calculated using a weighted
average of the genotypes of remaining probands.
Each weight is calculated based on the proximity
between the two samples as determined in Step 5.

7) Iterate
It is recommended to perform Steps 4-6 at most five
times [8].

8) Imputed data
The resulting data set of this iterative procedure
consists of HapMap data, imputed original data, and

synthetic data. The imputed original data set is
extracted and the imputation is finished.

Algorithm 1 was implemented in C++ language.

Evaluation of imputation
The assessment of the imputation quality was performed
as follows:

1) A subset of the Framingham Heart Study [12]
genotype data containing SNP genotypes of independent
probands was chosen.

2) From all available SNPs in the original data set, 10%
were drawn without replacement. All genotypes of these
SNPs were deleted in this data set to mimic a situation
with untyped SNPs.

3) Imputation of the deleted SNPs was performed as
described in Algorithm 1.

4) For each SNP, the imputed genotypes were compared
with the corresponding original genotypes. The imputa-
tion accuracy of a SNP equals the number of correctly
imputed genotypes divided by the number of all
imputed genotypes. The result reflects the quality of
the SNP’s imputation.

Quality and computing time of the imputation depend
primarily on two parameters, namely, the number of
trees in each forest and the number of iterations in
Algorithm 1. To obtain the optimal trade-off between
computing time and imputation quality, several RF
imputation runs were performed using different para-
meter settings. In addition, a potential correlation of
SNP imputation quality with minor allele frequency
(MAF) was subsequently investigated.

As a standard approach, the untyped SNPs were also
imputed using the computer program IMPUTE [5] using
default parameters and option pgs. IMPUTE calculates
three probabilities for each SNP genotype of a sample.
Each probability belongs to the homozygote rare allele,
homozygote common allele, or heterozygote genotype.
The most likely genotype has been chosen for missing
replacement. Results of IMPUTE and our RF method
were subsequently compared with regard to accuracy and
computing time.

Data
Data from 6752 participants in the Framingham Heart
Study [12] were provided as Problem 2 for GAW16. For
our analysis, only the genotypes of 762 unrelated
individuals from generation 3 were selected; neither
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haplotype data nor LD block data were used. Standard
quality control was applied to genotype data of the
Affymetrix GeneChip® Human Mapping 500k Array Set
(488,146 SNPs) as recommended [1,2,4,13]. SNPs with
a call rate < 0.98 per study group, a MAF < 0.01 in the
cases and controls combined or a p-value < 0.0001 for
deviation from Hardy-Weinberg equilibrium in control
group were excluded, resulting in 336,206 SNPs. Finally,
only SNPs of chromosome 22 were selected. The
resulting data contained the genotypes of 3,775 SNPs.
The mean distance between two adjacent SNPs
amounted to 3488 bp. About 10% (n = 376) of the
SNPs were deleted to represent untyped SNPs in a real-
world data set as previously described. The mean MAF of
SNPs was 0.2286, with a standard deviation of 0.1348.
The minimal MAF was 0.0134 and MAF maximum was
0.4993. The mean distance between an untyped SNP and
the nearest genotyped SNP amounted to 3916 bp. For
reference HapMap data [9] used in Algorithm 1 Step 1a,
genotypes of the 3,775 SNPs in 60 unrelated CEU
founders were downloaded.

Results
The optimal trade-off between computing time and
imputation quality was obtained by using 300 trees and
five iterations. In this setting, RF imputation required 5
minutes on a quad-core computer with a 2.33 GHz
processor. The mean accuracy amounted to 62.70% with
a standard deviation of 17.88%. The minimal and
maximal accuracy was 34.78% and 97.32%, respectively.
Imputation accuracy and MAF of a SNP were found to be
strongly correlated as shown in Figure 2. Only SNPs with
a small MAF showed a high imputation quality.
Considering SNPs with a higher MAF, the accuracy
decreased drastically. Accuracy of imputed SNPs with a
MAF between 0.15 and 0.3 is heterogeneous. Given the
MAF of a SNP, imputation accuracy is similar to the
maximum of genotype frequencies of a SNP in Hardy-
Weinberg equilibrium (Figure 2).

IMPUTE required 20 minutes computing time on a
computer with a 2.33 GHz processor. The mean accuracy
was 92.62%, with a standard deviation of 10.61%. The
minimal and maximal accuracy was 52.49% and
100.00%, respectively. MAF and accuracy were not
found to be correlated (Figure 2).

Discussion and conclusion
The RF imputation procedure consumes an acceptable
amount of computing time and imputes considerably
faster than the alternative standard approach. An
imputation of a full GWAS SNP data set might be
feasible even on slow computers.

However, this advantage is accompanied by a lower
quality of imputation compared to IMPUTE. Obviously,
the imputation quality of a SNP strongly depends on its
MAF. Further theoretical study is needed to investigate
whether the expected imputation accuracy of a SNP can
be roughly estimated by calculating the maximum of its
genotype frequencies.

To conclude, we presented an approach of imputing
untyped SNPs using RF. The procedure is computation-
ally feasible. However, for a highly accurate imputation
of untyped SNPs, alternative methods may be more
appropriate.
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