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Abstract

Background: It has been shown that if genetic relationships among individuals are not taken into account for
genome wide association studies, this may lead to false positives. To address this problem, we used Genome-wide
Rapid Association using Mixed Model and Regression and principal component stratification analyses. To account
for linkage disequilibrium among the significant markers, principal components loadings obtained from top
markers can be included as covariates. Estimation of Bayesian networks may also be useful to investigate linkage
disequilibrium among SNPs and their relation with environmental variables.
For the quantitative trait we first estimated residuals while taking polygenic effects into account. We then used a
single SNP approach to detect the most significant SNPs based on the residuals and applied principal component
regression to take linkage disequilibrium among these SNPs into account. For the categorical trait we used
principal component stratification methodology to account for background effects. For correction of linkage
disequilibrium we used principal component logit regression. Bayesian networks were estimated to investigate
relationship among SNPs.

Results: Using the Genome-wide Rapid Association using Mixed Model and Regression and principal component
stratification approach we detected around 100 significant SNPs for the quantitative trait (p<0.05 with 1000
permutations) and 109 significant (p<0.0006 with local FDR correction) SNPs for the categorical trait. With
additional principal component regression we reduced the list to 16 and 50 SNPs for the quantitative and
categorical trait, respectively.

Conclusions: GRAMMAR could efficiently incorporate the information regarding random genetic effects. Principal
component stratification should be cautiously used with stringent multiple hypothesis testing correction to correct for
ancestral stratification and association analyses for binary traits when there are systematic genetic effects such as half
sib family structures. Bayesian networks are useful to investigate relationships among SNPs and environmental variables.

Background
It has been shown that ignoring genetic relationships
among cases and controls may lead to false positives in
genome wide association analyses (GWAS). Genome-
wide Rapid Association using Mixed Model and Regres-
sion, GRAMMAR, (Aulchenko et al, 2007) approach is a

one solution based on correction of quantitative trait for
both polygenic and fixed effects. Another approach,
introduced by Price et al (2006), uses principal compo-
nents loadings (PCL) as covariate in linear regression
models for detecting and correcting ancestral stratifica-
tions for categorical traits in GWAS.
GWAS analyses result in a list of significant SNPs.

Some of these SNPs will be in linkage disequilibrium
(LD) due to the dense set of markers and this may lead
to collinearity among these SNPs. Collinearity among
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genotype scores could raise problems when applying
model selection procedures and different solutions have
been proposed from non parametric methods to selec-
tive algorithms (Wang and Abbott, 2008). Wang and
Abbott (2008) suggested using a principal component
regression (PCReg) approach to break the collinearity
among marker genotypes using top principal compo-
nents loadings (PCL) as covariates in the linear regres-
sion model. Pant et al (2010) extended the PCReg
approach to the categorical traits via logistic regression
and model selection strategies.
Most of the GWAS studies do not take into consid-

eration the possible relations among SNPs and/or with
other explanatory variables. Bayesian networks are mod-
els that present statistical dependencies and independen-
cies in the joint probability distribution of the data. As
such they do not state causality, but it is certainly possi-
ble to speculate what kind of causal mechanisms would
be compatible with the observed dependencies and inde-
pendencies. Rodin et al (2005) used Bayesian networks
to do joint inference on marker variation in the human
APOE gene and plasma apolipoprotein E levels. Sebas-
tiani et al (2005) used Bayesian networks in association
studies.
The main aim of this study was to apply GRAMMAR,

Bayesian Network and principal component stratifica-
tion models to QTL-MAS 2010 dataset.

Methods
Genome-wide rapid association using mixed model and
regression
In the first step of the GRAMMAR analysis, we esti-
mated the heritabilities and residuals for the quantitative
trait using an animal model as was implemented in
Asreml (http://www.vsni.co.uk/software/asreml);

y = Xb + Za + e (1)

, where y contains the observations, b is the fixed
effects of sex, a is the additive genetic effect, matrices X
and Z are incidence matrices, and e is a vector contain-
ing residuals.
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For the random effects, it is assumed that A is the
additive genetic relationship matrix for the animals; I is
an identity matrix,s a

2
is the additive genetic variance

and s e
2
is the residual variance. In the second step,

assuming a single SNP model for the quantitative trait,
we could detect the most significant SNPs using the fol-
lowing model:

y=Xf + h + e (2)

where y represents vector of n observations (residuals
from (1)), h is intercept, X is a design matrix relating
observations with f regression coefficients vector to be
estimated, e is a vector of residuals assumed to be nor-
mally distributed. We applied GRAMMAR (Aulchenko
et al, 2007) with 1000 permutation to detect most signif-
icant SNPs for quantitative trait using residuals obtained
(1) and used in (2) as response variable.

Principal components analyses
Principal components analyses can be used to decom-
pose the genomic matrix into a set of new orthogonal
variables which account for the total variance of the ori-
ginal variables (Everitt et al., 2001) in decreasing propor-
tions. For the binary trait, we used principal component
stratification (Price et al, 2006) methodology to account
for ancestral stratification in the QTL-MAS2010 dataset,
as was implemented in SAS and JMP Genomics soft-
ware (SAS institute, Inc, Carey, NC, USA) version 9.1.
In order to take LD among significant markers into
account for GRAMMAR and principal component stra-
tification approaches we applied principal component
analyses with 21 (PCL) as covariate (about 80% of var-
iance explained) for the quantitative trait and 20 PCL as
covariate (about 75% of variance explained) for the bin-
ary trait in regression models (Minitab, Ver 14).

Bayesian network
Bayesian networks are multivariate models for determin-
ing the probability of an n-dimensional discrete data
vector X=(X1, …, Xn) (Pearl, 1988). Bayesian networks
consist of two components: a directed acyclic graph G=
(G1, …, Gn) and the parameters Θ=(Θ1, …, Θn). The
graph G determines for each variable Xi a set Gi of par-
ent variables (i.e. variables from which there are directed
arcs to Xi). A hypothesis conveyed by such a graph is
that the probability of vector X can be expressed as a
product of conditional probabilities parameterised by
the components of Θ:

P X |G, = P X | ,G .
i=

n

i i iΘ Θ( ) ( )∏
1

For data D of n-dimensional i.i.d. data vectors the
formula above allows us to calculate the probability
P(D | G, Θ). More interestingly, in a Bayesian setting,
under certain technical assumptions, after giving a prior
distribution for the parameters Θ, one may calculate the
marginal likelihood P(D | G,a), where a denotes the
hyperparameters for the prior distribution of the Θ.
This allows us to compare Bayesian network structures
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by their posterior probability P(G | D,a) a P(D | G,a)P
(G) (Heckermann et al. 1995). It is well known that
finding the most probable Bayesian network structure is
an NP-hard problem (Chikering 2002). Therefore it is
customary to resort to search heuristics such as a local
greedy search. However, it has been shown that the
most probable forest structured Bayesian network (i.e. a
network in which each variable has at most one parent)
can be found in quadratic time with respect to number
of variables n (Heckermann et al. 1995).
We used the significant markers found from GRAM-

MAR and principal component approaches to train the
Bayesian network. We learned both general Bayesian
network and Bayesian Forests using different search
algorithms to compare the results with LD measures.
Details of the LD measures used in this paper could be
found in Devlin and Risch (1995).

Results
Quality Control
We excluded 263 SNPs due to minor allele frequency
<1%, leaving 9768 SNPs in the analyses. We excluded 8
individuals with too high IBS (Identity By State) (>95%)
leaving 2318 individuals in the dataset. Normality for
the quantitative trait was confirmed by Kolmogorow
Smirnow test, P > 0.150. Based on an animal model (1)
we estimated heritabilities as 0.44 (±0.05) for the binary
trait and 0.58 (±0.12) for the quantitative trait.

Analysis of binary trait
We used 20 PCL to take possible ancestral stratifica-
tion into account for the binary trait. Visual inspection
of the scree plot showed that the sharpest reduction
was obtained from the first 10 principal components.
We detected the top 109 SNPs based on local FDR
(Strimmer, 2008a) (p<0.0006). In order to take linkage
disequilibrium into account we additionally applied
PCReg with normal and logit functions. Using the first
20 PCL as covariate, we applied PCReg to 109 markers
with a logit function, and obtained the top 50 SNPs
from this approach. We also investigated loading plots
for the top SNPs. Although some clusters were found
related with location of the SNPs and LD among them,
this was not observed consistently for the entire gen-
ome (Additional File 1). We mapped 5 QTL’s correctly
with 0.33Mb average distance from the simulated
QTL. Although top markers such as 5488 or L4483
were detected by the model, 41 QTL showed an aver-
age distance of 5.5 Mb from the nearest real QTL and
could be considered false positives. This suggests that
under the strong systematic genetic effects (as such as
a half-sib family structure) more stringent multiple
hypothesis testing correction procedures should be
used.

Analysis of quantitative trait
Using Grammar we obtained the top 106 SNPs with
1000 permutation (p<0.05) (Figure 1 and 2). We used
PCReg with 21 PCL to take collinearity among them
into account and reduced the list to 16 SNPs. We also
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Figure 1 GRAMMAR results for quantitative trait without (A).
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Figure 2 GRAMMAR results for quantitative trait with 1000
permutations (B).
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investigated loading plots for top the SNPs. Again some
clusters showed a relation with locations of SNPs and
LD among them, but this was not observed consistently
for the entire genome. We mapped 5 QTLs with a
mean distances of 0.31 Mb from the simulated QTL
mean distances. We found 7 false positives with 3.6 Mb
mean distances.

Bayesian network
We constructed the general Bayesian Networks using
non-informative priors and did not use any prior bio-
logical information (Myllymaki et al, 2002)(Additional
file 2). We used significant markers from GWAS to
estimate the Bayesian Networks. The learned network

was compared empirically with the LD statistics and
arc strengths. This showed incomplete concordance
between the two approaches (Table 1). Because the
Bayesian network is a multivariate model and LD
measures are pair-wise only differences can arise
(Table 1). Subsequently, we created the Bayesian For-
est (Appendix 2), which is also pair-wise, and com-
pared some of the nodes with LD measures (Table 2).
Arc strengths showed relative similarities with correla-
tion, Yules Q and D prime LD measures (Table 2).
We estimated Pearson correlations among the com-
mon SNPs from both methodologies, which were
higher for Bayesian Forest (Table 3 and Additional
File 3).

Table 2 Comparison of Bayesian Forest estimates with Linkage Disequilibrium estimates

Marker1 Marker2 ChiSq ProbChi D CorrCoeff Dprime Delta PropDiff YulesQ ARC Exp(ARC)

A599 A613 1567.399 0 0.09 0.82 0.95 0.74 0.74 1.00 850.271 NA*

A599 A5603 117.2745 2.50 x10-27 0.04 0.22 0.60 0.15 0.14 0.66 80.5 9.13 x1034

A3102 A3105 1916.852 0 0.20 0.91 1.00 1.00 0.94 1.00 1668.336 NA*

A3102 A3444 128.9518 6.95 x10-30 0.03 0.24 0.66 0.67 0.46 0.76 80.14 6.37 x 1034

*Number is too big to show in the table.

Table 3 Pearson correlations between General Bayesian network (A) and Bayesian Forest (B) and linkage
disequilibrium measures

A D Correlation Coefficients D Prime Yules Q

Correlation Coefficients 0.961

D prime 0.689 0.776

Yules Q 0.719 0.809 0.950

ARC 0.692 0.726 0.483 0.456

B D Correlation Coefficients D Prime Yules Q

Correlation Coefficients 0.882

D prime 0.434 0.601

Yules Q 0.537 0.697 0.900

ARC 0.892 0.915 0.576 0.569

Table 1 Comparison of linkage disequilibrium measures with general Bayesian Network arc strengths

Marker1 Marker2 Chi P(Chi) D CorrCoeff Dprime Delta PropDiff YulesQ ARC exp(ARC)

A8111 A9100 692.12 1.50x10-152 0.09 0.55 0.87 0.88 0.71 0.95 293.53 3.01x10127

A8363 A9100 516.77 2.10x10-114 0.08 0.47 0.99 0.99 0.66 0.99 71.68 1.35x1031

A8111 A8363 548.72 2.40 x10-114 0.11 0.49 0.64 0.51 0.45 0.82 519.43 3.85x10225

A8111 A8351 2318 1.70 x10-236 0.16 0.68 0.98 0.63 0.63 0.99 694.50 4.14x10301

A8035 A8329 1668.98 0 0.21 0.85 0.97 0.84 0.83 1.00 232.66 1.10x10101

A8329 A8351 20.12 7.27 x10-6 -0.02 -0.09 -0.11 -0.19 -0.09 -0.19 240.85 3.98x10104

Arc (and it is exponent) shows that taking the arc away from the current network would make the resulting model less probable; hence bigger arc number
shows stronger association.

D Linkage Disequilibrium Coefficient

CorrCoeff: Correlation coefficient

Dprime: Lewontin’s D’

Delta: Population attributable risk, δ

PropDiff: Proportional difference

YulesQ: Yule’s Q
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Estimation of SNPs effects
For quantitative trait we estimated the SNPs effects with
linear models. We used residuals from model (1) as
response variable in a linear model. When we used pheno-
types as response variable linear model tend to overesti-
mate the total explanatory variation. We estimated QTL
variance for the top marker (5488) as 7.7 % and 2.9 %
using linear models with phenotypic and residual values,
respectively. This QTL was simulated with 4.49 % variance
suggesting that using residuals gave more correct esti-
mates. When residuals are not normally distributed, ortho-
gonal models are robust compared with a linear model
from deviation of normality (Sarabia et al, 1997).

Conclusions
When cases and controls have genetic relations, GRAM-
MAR could efficiently incorporate the information
regarding random genetic effects. Principal component
stratification could be used to correct for ancestral stra-
tification and association analyses for binary traits
although if there is systematic genetic effects stringent
multiple hypothesis test corrections should be used.
Bayesian networks are useful to investigate relationships
among SNPs and environmental variables. Although a
learned network does not have to show causal relation-
ships, it is still informative and creates hypotheses based
on interactions among SNP’s.

Additional material

Additional file 1: Loadings of first 2 principal component of binary
trait from top 109(AXX) markers using principal component
stratification model. Although some markers cluster according to
high linkage disequilibrium and by chromosome, this is not
consistently true over the genome. Loadings of first 2 principal
component of binary trait from top 109(AXX) markers using principal
component stratification model. Although some markers cluster
according to high linkage disequilibrium and by chromosome, this is not
consistently true over the genome.

Additional files 2: Learned general Bayesian network for binary trait
using top 109 markers obtained from principal component
stratification methodology. Learned general Bayesian network for
binary trait using top 109 markers obtained from principal component
stratification methodology.

Additional file 3: Learned Bayesian Forest for binary trait using top
109 markers obtained from principal component stratification
methodology. Learned Bayesian Forest for binary trait using top 109
markers obtained from principal component stratification methodology.
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