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Background

Can Arabidopsis research contribute to our understand-
ing about wood development? Does the function of vas-
cular cambium in a herbaceous weed resemble that of a
tree? Despite its diminutive size as compared to a tree,
Arabidopsis still displays cambial driven secondary
thickening in several organs, including the hypocotyl.
Hypocotyl is a good model organ for wood development
studies, as in this organ the radial secondary develop-
ment can be uncoupled from the apical primary growth.
This is due to the fact that the hypocotyl elongates only
for five days after germination; thus, the radial second-
ary growth starts only after the elongation has ceased.
This is in contrast to the other Arabidopsis organs dis-
playing cambial growth, where it is accompanied by the
simultaneous activity of the shoot and root meristems.

Two phases can be identified in the hypocotyl second-
ary development: 1) an early phase of proportional radial
growth, where the cambium produces both xylem and
phloem at a similar rate, and 2) a later xylem expansion
phase, where more xylem than phloem is produced (Fig
1A) [1] . Notably, the composition of xylem is different
between these two phases: the xylem produced during
the first phase consists of xylem vessels and parenchyma
cells, and of xylem vessels and fibers during the second
phase. Especially the later phase, characterized by exten-
sive wood formation, resembles the secondary growth in
tree species.

We have previously shown that in Arabidopsis hypo-
cotyl the transition from the first to the second phase
is triggered through the onset of flowering, when the
identity of shoot apical meristem changes from vegeta-
tive to reproductive [1] . Upon this transition, instead
of new leaves, an inflorescence stem emerges from the
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middle of rosette leaves. What could be the nature of
this signal [2]?

Results and discussion

Does flower differentiation trigger the onset of xylem
expansion? To study this, we analyzed Arabidopsis null
mutants for key flowering regulators. We were able to
confirm that xylem expansion took place in all our
mutants, suggesting that neither floral specification nor
bolting (the emergence and elongation of the inflores-
cence stem from the rosette) are required for this
process.

Thus, our signal appeared to be upstream of flowering;
possibly the same signal activated both flowering and
xylem expansion? Since gibberellin hormone (GA) has
been shown to be an important regulator of flowering
initiation, we wondered what effect it would have on the
secondary growth. Indeed, both xylem expansion and
flowering were initiated upon GA treatment. To study if
GA biosynthesis was required for xylem expansion, we
analyzed gal-3, a null mutant for the GA REQUIRING 1
gene encoding a key GA biosynthesis enzyme. As
expected, these plants displayed strongly reduced xylem
expansion.

Next we wanted to study, if not only the GA content,
but the actual level of GA signaling, was important for
the regulation of xylem expansion. We observed that
the transgenic and mutant lines with elevated GA sig-
naling displayed increased and the lines with impaired
GA signaling accordingly reduced xylem expansion, thus
confirming the rate-limiting role of GA in this process.

Does GA signaling stimulate xylem expansion at the
cambium, or does it function at the shoot apex to
launch the production of the mobile signal? To study
this, we performed grafting experiments (Fig 1B). We
could see that the wild-type level of GA signaling in
either part of the graft could not rescue the xylem
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Figure 1 A) Cross-section of Arabidopsis hypocotyl showing the
two phases of secondary development. B) In Arabidopsis grafting,
young seedlings are cut into two through hypocotyl, and the
hypocotyl of shoot (scion) part and the root (stock) part are then re-
attached in the desired combination. C) Schematic picture of the
gal-3 vs wild-type (WT) grafting experiment. GA from the WT scion
was able to rescue xylem expansion in the hypocotyl of the GA
deficient gal-3 stock.

expansion if the other part was dominantly inhibited in
GA signaling. Accordingly, elevated GA signaling level
enhanced xylem expansion only locally; the effect was
not graft-transmissible to the wild-type part of the graft.
Thus, GA signaling cascade appears to act as a local
regulator of cambial activity, downstream of the mobile
signal.

Could the GA hormone itself be mobile? We studied
this by reciprocally grafting the GA deficient gal-3
mutant with a wild-type plant. Strikingly, in these plants,
the wild-type scion (shoot part) restored xylem expan-
sion in the hypocotyl of the gal-3 stock (root part) (Fig
1C). To sum up, an impaired GA signaling did not
affect xylem expansion systemically, suggesting that it
acts downstream of the mobile cue. By contrast, the GA
effect was graft transmissible, confirming that GA itself
is the mobile shoot-derived signal.

Conclusions

Our study shows that GA acts as a mobile signal that
activates the onset of extensive xylem production in
Arabidopsis hypocotyl. It would be interesting to study
if a similar GA driven process takes place also in tree
species upon the seasonal or age-related activation of
their cambial growth. We think that Arabidopsis
research has the potential to contribute novel hypoth-
eses into secondary development research, and that it
can complement tree studies in some areas of this
research field. However, due to the sheer extend of sec-
ondary development present in tree species, and their
other special characteristics (the seasonal activity-
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dormancy cycle etc.), many processes of secondary
growth remain to be best studied in trees.
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