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Abstract

Recently we proposed a novel two-step approach to test for pathway effects in disease progression. The goal of

this approach is to study the joint effect of multiple single-nucleotide polymorphisms that belong to certain genes.
By using random effects, our approach acknowledges the correlations within and between genes when testing for
pathway effects. Gene-gene and gene-environment interactions can be included in the model. The method can be

implemented with standard software, and the distribution of the test statistics under the null hypothesis can be
approximated by using standard chi-square distributions. Hence no extensive permutations are needed for
computations of the p-value. In this paper we adapt and apply the method to family data, and we study its
performance for sequence data from Genetic Analysis Workshop 17. For the set of unrelated subjects, the
performance of the new test was disappointing. We found a power of 6% for the binary outcome and of 18% for
the quantitative trait Q1. For family data the new approach appears to perform well, especially for the quantitative
outcome. We found a power of 39% for the binary outcome and a power of 89% for the quantitative trait Q1.

Background

Testing for the joint effect of single-nucleotide polymorph-
isms (SNPs) located in a set of genes is a popular alterna-
tive to single-marker tests [1]. Typically these SNPs have
small effect sizes, and thus separate SNP analysis methods
will be underpowered. On the other hand, approaches that
consider sets of genes and test for the combined effect of
multiple SNPs will be more powerful. Gene sets can be
defined on the basis of the biological function of the genes
(pathways) and can contribute thereby to biologically
interpretable results. Gene-set methods were originally
proposed for gene expression data and have recently been
adapted to test for pathway effects using genetic data [2,3].
A fundamental difference between gene expression data
and genetic data is that in genetic data multiple SNPs
within genes that are correlated are available. Current
pathway-based methods for genetic data do not properly
capture this correlation structure of the genetic data and
therefore may lose efficiency. Recently, two pathway
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approaches were proposed that take the correlation
between SNPs into account [4,5]. Both approaches have
two steps: (1) reducing the dimensionality of the genetic
data and producing gene-specific summaries and (2) intro-
ducing these summaries as covariates into the model for
the phenotype.

The two-stage approach of Tsonaka et al. [5] models the
correlation between SNPs in a pathway using a generalized
linear mixed model for the SNPs with nested random
effects. This approach uses a pathway-level and a gene-
level random effect to capture the correlation between
genes and within each gene, respectively. The empirical
Bayes estimates of the random effects per subject and
gene are used as summary measures of the SNP data and
are included in the phenotype model to test for pathway
association. Tsonaka and colleagues proposed this
approach to test for pathway effects for disease progres-
sion in a longitudinal study. They used a likelihood ratio
test and a Wald statistic and showed by simulations that
the test statistics follow a chi-square distribution under
the null hypothesis. The aim of this paper is to study the
performance of this approach for the sequence data on the
families of Genetic Analysis Workshop 17 (GAW17).
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We knew the answers and took the simulation setup
for these data into account. We considered that the
genes that were simulated were associated with the phe-
notype Q1 and studied their association with the quanti-
tative traits Q1 and Q4 and the binary trait. Because an
interaction between smoking status and the KDR gene
was included in the simulation model, we also consid-
ered this gene-environment interaction in the phenotype
models.

Methods

Study sample

We considered data from 697 unrelated individuals and
311 subjects from 140 sibships forming 8 families. The sib-
ship sizes vary from one to six siblings. The degree of rela-
tionships between members of different sibships was
larger than 0.25; that is, parents were removed when their
offspring were included. For the pathway analysis we con-
sidered SNPs that belong to the following eight genes:
ARNT, ELAVL4, FLTI, HIF3A, KDR, FLT4, and VEGFA.
Gene HIFIA was not considered because it does not con-
tain SNPs that vary in the family data. In total, the analysis
was restricted to 48 out of 125 SNPs in the Q1 (vascular
endothelial growth factor [VEGF]) pathway because only
these SNPs show variation in the families. The minor allele
frequencies (MAFs) of the associated variants in these
genes vary from 0.000717 to 0.164933. As covariates we
considered Age and Smoking status. For gene KDR, an
interaction with Smoking was included in the phenotype
models. We applied the two-stage method to the 200
simulated GAW17 data sets [6] to study its power. In
addition, we present the results of the analysis of data
set 1. A description of data set 1 is given in Table 1.

Model specification

Let y; be the outcome variable for individual j from sib-
ship i. Assume that a pathway is analyzed with G genes
and that each gene g (g = 1, ..., G) contains S, SNPs. Let
Wijgs be the genotype at SNP s (s = 1, ..., S;) located in
gene g (g = 1, ..., G) for individual j of sibship i. The
genotype W, is coded 0, 1, or 2. For individual j of sib-
ship i, let x}; and xjj be vectors with covariate values
for the phenotypes and genotypes. Within each gene
SNPs are correlated, and in practice only a part of the
SNPs will be associated with the outcome.

Table 1 Description of data set 1

Trait Unrelated subjects (n = 697) Family (n = 311)
Q4 (mean and SD) 0 (1) 0.75 (0.58)

Q1 (mean and SD) 0 (1) —0.25 (0.99)
Binary outcome 300 11.6
(affected) (%)

Smoking (yes) (%) 26.0 219
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Gene model

We assume that Hardy-Weinberg equilibrium holds. We
consider three random levels: (1) a sibship’s random
effect, (2) a subject’s random effect, and (3) a gene effect
within a subject. Let b; be the random effect for the sib-
ship, b;; the random effect for subject j within sibship i,
and b, the random effect of gene g of person j within
sibship i, and let x;}’gs be a set of covariates. Note that
the random effect b;; represents for each individual j the
shared effect of the genes of the pathway. Given these
random effects b;, b;;, and b;;, and the covariates xf;’gs ,
Wijgs is assumed to follow a binomial distribution with
n = 2 trails and probability ;. The probability ;g is
modeled as follows:

7r.
where b;, b;;, and b;;, follow normal distributions with

Uk I
zero mean an]d Varianlcges ot 03,and o3, respectively.
For unrelated subjects we use model (1) without the sib-
ship effect b;.

For individuals and for each gene the empirical Bayes
estimate is given by:

Intuitively the value of the empirical Bayes estimate
will increase with the number of rare variants that a
subject carries.

Phenotype model

The empirical Bayes estimates obtained from the first
stage can be plugged into the models for the phenotypes
to test for pathway effects and gene-specific effects. For
the quantitative traits (i.e., Q1 and Q4) we use a linear
mixed model:

Vi = p+ Pxl +yebyy +-+ycebyc +up+ey  (3)

where u; is a normally distributed random sibship
effect and e; is a normally distributed residual. For the
binary outcome variable a generalized estimating equa-
tion (GEE) approach was used with an exchangeable
correlation structure for subjects within sibships:

E(Yy) = h™Ha + Bxl +yieby + -+ vgebyc), (4)

where / is the logit function. The Ime4 package in R
was used to fit mixed models. The gee package in R [7]
was used for the GEE approach. Based on models (3)
and (4) we can test the null hypothesis of no pathway
effect, which is equivalent to testing the null hypothesis
Hy: 71 = ... = Y6 = 0. We used a Wald statistic with G
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degrees of freedom. In addition, gene-level effects can be
tested.

Type | error

Using extensive simulations, Tsonaka et al. [5] showed
that the test statistics preserve the type I error at a
nominal level for pathway analysis for longitudinal data.
We tested for association between the Q1 pathway and
the Q4 trait. Because Q4 should not be influenced by
the genes of this pathway, the power should be equiva-
lent to the type I error.

Results

Type | error and power

We fitted model (1) to the 48 SNPs of the Q1 pathway,
which showed variation in the families. We included the
covariate Smoking in the model because an interaction
between KDR and smoking status was included in the
simulations. Then we plugged the empirical Bayes esti-
mates per gene and subject into models (3) and (4) for
the quantitative and binary variables, respectively. Age
and Smoking were included as covariates. In addition,
we included an interaction between smoking status and
the empirical Bayes estimate for KDR.

In Table 2 for Q1, Q4, and the binary outcome, we
show the percentages of the data sets for which the null
hypothesis of no Q1 pathway is rejected at the 5% level.
The results are based on all 200 data sets. The genes of
the Q1 pathway have a direct effect on Q1 and, through
Q1, also have an effect on the binary outcome. These
genes should not be associated with Q4; hence the per-
centages for Q4 are estimates of the type I error. For
unrelated subjects the type I error is near 5%, but for
the family data the type I error is too high (10%). The
novel test performs well for quantitative traits observed
in families: The power to detect the Q1 pathway for Q1
is 89%. The power to detect the Q1 pathway for disease
in families is smaller, namely, 39%. The power to detect
the Q1 pathway in the set of unrelated subjects is small.

Analysis of data set 1

The results of the pathway analyses for data set 1 are
given in Table 3. In the families, we obtained a highly
significant result for the pathway of eight genes for the
quantitative trait Q1 (p = 4.9 x 107'°). In the set of
unrelated individuals the pathway was not significantly

Table 2 Percentage of data sets for which Hy: “no Q1
pathway effect” is rejected at the 5% level

Trait Unrelated subjects (%) Family (%)
Q4 5 10
Q1 18 89
Binary outcome 6 39
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Table 3 p-Values for testing pathway and gene effects
for data sets

Gene Binary outcome Quantitative trait Q1
Unrel® FAMP Unrel® FAMP
ARNT 0.13 0.12 027 0.76
FLAVL4 0.14 0.55 0.31 0.15
FLTT 032 044 0.01 0.84
FLT4 0.77 011 032 16x10°8
HIF3A 0.69 0.62 0.07 0.04
KDR* 0.26 0.53 0.35 0.89
Interaction® 0.86 0.38 0.24 0.68
VEGFA 045 0.10 0.26 0.004
VEGFC 0.98 042 0.69 68x 107
Pathway 051 0.002 0.06 49 % 107'°

@ Based on genotypes of 697 unrelated individuals.

b Based on 140 sibships.

€ Two degrees of freedom tests (including interaction term).
9 p-value for interaction term.

associated with Q1 (p = 0.06). Also the p-values per
gene are presented in Table 3. These p-values corre-
spond to tests for a gene effect conditional on the
empirical Bayes estimate of the remaining genes in the
pathway. For the family data and Q1 trait, the FLT4 and
VEGFC genes were significant.

For the binary outcome in the families we found a signif-
icant association, although it was less strong than that for
the quantitative trait (p = 0.002). None of the genes were
significant, which suggests that multiple SNPs in multiple
genes have a joint effect on the outcome. The Q1 pathway
was not significantly associated with the binary trait in the
unrelated individuals.

The interaction between smoking status and the KDR
gene was not significant for both outcomes either in the
families or in the set of unrelated subjects (see Table 3).

Discussion

The pathway analysis applied to the family data resulted in
more significant results than using the set of unrelated
individuals, especially for the analysis of trait Q1. One rea-
son for the better performance in the family data com-
pared to the set of unrelated subjects is probably the
oversampling of rare variants in the families. For example,
the SNP C4S4935 of the VEGFC gene has a MAF of
0.0290 in the families in contrast to a MAF of 0.0007 in
the set of unrelated individuals. Also, two of the three
SNPs of the FLT4 gene have a larger MAF in the families
than in the unrelated set. Another reason for the larger
power in the families is the fact that we are testing against
a smaller residual when a sibship effect is included. Finally,
the power may be too high because the size of the test is
not correct. Indeed, based on the pathway analysis for trait
Q4, we obtained a high type I error.
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We further investigated whether the high type I error
could be attributed to the fact that correlation between
cousin pairs is not taken into account in our models (3)
and (4). Thus we added an extra random effect to these
models, but the obtained type I error did not change. Uh
et al. [8] also obtained too large type I errors when testing
associations between Q1 genes and the Q4 trait in the
unrelated subjects. They showed that, by using simulations
under the null hypothesis, the type I error of the test sta-
tistics are at a nominal level. One reason for the large per-
centage of rejections using Q4 may be that Q1 and Q4 are
not independent in the data sets. Indeed in all 200 data
sets Pearson’s correlation coefficients between the two
traits are smaller than 0 (mean, —0.31; minimum, -0.39;
and maximum, -0.24). Concerning the binary trait, the
power to detect the Q1 pathway was smaller than for Q1
trait. The reasons are that the Q1 genes have an indirect
effect on the binary trait and that we used a less efficient
approach, namely, the GEE approach instead of a likeli-
hood-based approach.

The power to detect the pathway in unrelated subjects
was disappointing. The rare variants have smaller frequen-
cies in these samples and are not tagged by more common
variants [8]. The power of a set of unrelated individuals
may be improved by combining estimates from different
studies, for example, the GAW17 unrelated individuals
and family data [9]. For GAW17 this approach could not
be applied because the rare variants are oversampled in
the families. Another approach may be to focus on rare
variants only. One of the reviewers pointed out that an
alternative test for association between the outcome and
rare variants can be obtained by fitting model (1) to all
rare variants of all genes of the pathway. By doing so, one
can obtain an empirical Bayes estimate that represents all
rare variants of the pathway. The advantage of this
approach is that by including this empirical Bayes estimate
in the phenotype model, a one degree of freedom test for
association between the rare variants and phenotypes is
obtained that may be more powerful than the G degrees of
freedom test that was studied in this paper. A disadvantage
of this approach is that the structure of SNPs within genes
is ignored. Therefore gene-environment interaction
between specific genes and environmental factors cannot
be modeled. For the GAW17 data, interaction between
KDR and smoking status was included in the simulation
model.

Our novel method captures the correlation between
SNPs within and between genes by using random effects.
Another approach was proposed by Chen et al. [4]. They
summarize the SNPs per gene by using principal compo-
nents (eigen-SNPs). They show that their approach is
more powerful than methods that ignore the dependency
structure between the SNPs. This approach cannot be
directly applied to family data because one of the principal
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components may capture the dependence between rela-
tives. Therefore the selection of eigen-SNPs to represent a
gene is not straightforward. Moreover, SNPs are categori-
cal variables, and therefore applying principal components
analysis may not be optimal. Finally, principal components
analysis cannot deal with missing genotypes. Hence miss-
ing genotypes should be first imputed before this approach
can be applied.

Application of the new method to sequence data in
unrelated individuals shows that when rare variants are
not tagged by common variants, the new method is not
able to detect these rare variants. Currently we are work-
ing on a method that jointly models the rare variants by
using collapsing methods and the common variants.

Conclusions

Our novel pathway test is a powerful tool to detect
pathways in family data. The advantages of this method
are that it captures the correlation between SNPs, can
deal with missing data, can adjust for gene-gene or
gene-environment interaction, can be applied to any
phenotype model, and can be implemented in standard
statistical software.
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