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Abstract

We propose a novel aggregating U-test for gene-based association analysis. The method considers both rare and
common variants. It adaptively searches for potential disease-susceptibility rare variants and collapses them into a
single “supervariant.” A forward U-test is then used to assess the joint association of the supervariant and other
common variants with quantitative traits. Using 200 simulated replicates from the Genetic Analysis Workshop 17
mini-exome data, we compare the performance of the proposed method with that of a commonly used approach,
QuTie. We find that our method has an equivalent or greater power than QuTie to detect nine genes that
influence the quantitative trait Q1. This new approach provides a powerful tool for detecting both common and
rare variants associated with quantitative traits.

Background
In the past decade, extensive genome-wide association stu-
dies (GWAS) have been conducted to understand the
genetic etiology of complex diseases. However, the com-
mon variants identified so far explain only a small fraction
of the variations of complex diseases [1]. It now seems
clear that the genetic etiology of complex diseases is highly
heterogeneous. Some genetic mutations, although indivi-
dually rare, may impose a high risk for the development of
diseases [2]. These rare variants have been the recipients
of growing attention by investigators. With the fast devel-
opment of biotechnology, it is now feasible to genotype
rare sequence variations in the general population with
unprecedented speed [3]. Meanwhile, statistical methods
are greatly needed to detect the association between these
genetic variants and common complex diseases.
The most commonly used approach for detecting the

association between rare variants and disease outcome is to
collapse multiple rare variants into a single “supervariant,”
which is tested further as a common variant. Based on this
idea, Li and Leal developed a combined multivariate and
collapsing (CMC) method for rare variant analysis [4].

This method was further extended for quantitative traits
and was implemented in the software package QuTie [5].
In the past two years, a number of collapsing methods that
use various strategies have been proposed, and they pro-
vide alternatives to the CMC method [6]. Compared to the
multivariate analysis of multiple rare variants, these collap-
sing methods could reduce the degrees of freedom by
creating a single supervariant composed of multiple indivi-
dual rare variants, thus improving the testing power. In
addition, testing on a single supervariant could reduce the
burden of multiple testing. However, the existing methods
also have a few limitations that may affect their perfor-
mance. Collapsing all the rare variants in the same gene or
genomic region, although biologically meaningful, can also
introduce nonfunctional variants into the supervariant,
which may diminish the signal that the functional variants
carry. Intuitively, this limitation can be addressed by collap-
sing only a subset of the disease-susceptibility rare variants.
In what follows, we refer to the collapsing process using
trait information as aggregation.
In this paper, we propose an aggregating U-test to

examine the association between the quantitative traits
and multiple genetic variants, including both rare and
common variants. First, the method adaptively collapses
the disease-susceptibility rare variants into a supervariant;
it then searches the supervariant and the remaining
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common variants for the best multi-SNP (single-nucleo-
tide polymorphism) combination, using a forward selec-
tion. We have applied our method to the Genetic Analysis
Workshop 17 (GAW17) mini-exome data and compared
its performance with QuTie.

Methods
We have recently developed a forward U-test to detect
gene-gene interactions using general multisample U sta-
tistics [7]. Here, we first describe the definition of U sta-
tistics and then explain the aggregation of rare variants
and the forward selection of multi-SNP combinations
using U statistics.
Suppose that we have a study population of N sub-

jects. Let Yi denote the observed value of the quantita-
tive trait for the ith individual (i = 1, 2, …, N); and let
Xi = Xi1, Xi2, … , XiK, denote the genotypes of K SNPs
for the ith individual, each taking its value from one of
the three possible genotypes, Xij Î {AA, Aa, aa}, j = 1,
2, …, K. Without loss of generality, we assume that a is
the minor allele, and the first r SNPs (Xi1, Xi2, …, Xir)
are rare variants.

U statistics
Suppose that we have L multi-SNP genotypes formed by
k SNPs of interest, denoted as G1, G2, …, GL. A multi-
SNP genotype Gl is defined here as a vector of the k
genotypes that an individual carries (e.g., g1, g2, …, gk).
The k SNPs and L multi-SNP genotypes are selected
sequentially out of a total of K genotyped SNPs (see the
“Forward U-test” section for details). Let:

S i X G l Ll i l= ={ } =: , , , ..., ,1 2 (1)

be the set of subjects carrying multi-SNP genotype Gl,
and let ml = |Sl| be the number of subjects in Sl. We
measure the trait difference between two sets of subjects
Sl and Sl′ as:
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where the kernel function is chosen as:
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Ul,l′, is the summation of all possible pairwise trait com-
parisons for any two subjects from Sl and Sl′. In the pre-
sence of an association, we would expect individuals
carrying different multi-SNP genotypes to have different
trait values (e.g., those carrying a high-risk multi-SNP gen-
otype would have higher trait values than those carrying a
low-risk multi-SNP genotype). Based on Ul,l′, we can form
the global U statistic. We assume that the expected

quantitative trait value of the L multi-SNP genotypes
decreases with l (i.e., E Y E Y E YS S SL
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≥ ≥ ≥ ). Prac-
tically, we sort the multi-SNP genotypes according to their
average trait values (i.e., Y Y YS S SL1 2

≥ ≥ ≥ ). We define
the global U statistic for L sets of subjects with different
multi-SNP genotypes as:
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Here, the weight parameter ωl,l′ is chosen to account
for the number of subjects in each genotype group. This
global U statistic measures the overall trait differences
among individuals from a total number of L multi-SNP
genotype groups. It is equivalent to Eq. (2) when L = 2.

Aggregation of the rare variants
When dealing with a large number of rare variants, it is
likely that a significant proportion of the rare variants
will not be associated with a disease; thus collapsing on
a selected subset of rare variants will be necessary. Each
rare variant can form two single-SNP genotypes, {g1 =
Aa | aa, g2 = AA}, for which a U statistic can be calcu-
lated by using Eq. (2). We rank the U statistics in
decreasing order as U(1), U(2), …, U(r). Assume that V(1),
V(2), …, V(r) are the corresponding rare variants in a
candidate gene and that Xi(1), Xi(2), …, Xi(r) are their
observed genotypes for individual i. We start from var-
iant V(1), and define a supervariant as:
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At each step of the aggregation process, we add a rare
variant with the largest U statistic to the supervariant.
Accordingly, we redefine the supervariant as:
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The supervariant in Eq. (7) always forms two different
genotypes, {Rij = 1, Rij = 0}, for which a U statistic can
be calculated using Eq. (2). The collapsing procedure
stops at step t, where the U statistics start to decrease
(i.e., U U U UR R R Rt t1 2 1

≤ ≤ ≤ >
+

 ).

Forward U-test
A forward U-test is used to evaluate the supervariant
and other common variants for their joint association
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with the trait [7]. We start the process by treating
all individuals as a single group. In the first step,
each common SNP j can form two single-SNP geno-

types, g gj j
1 2,{ } , in three possible ways, denoted

g Aa g AA aaj j
1 2= ={ }, | , g Aa g AA aaj j

1 2= ={ }, | , and

g aa g AA Aaj j
1 2= ={ }, | . As a special case, the supervar-

iant can form only two single-SNP genotypes,

g gR R
1 21 0= ={ }, . This leads to a total of 3(K − r) + 1

possible grouping strategies, which can be represented

by G g G gj j
1
1

1 2
1

2
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s( ) denotes the lth

multi-SNP genotype at step s. A U statistic can be cal-

culated for two sets of subjects grouped by G G1
1

2
1( ) ( ),{ } .

The SNP with the largest U statistic value is selected,
and the corresponding grouping is recorded.
In the second step, based on the first selected SNP, a

second SNP j′ is chosen to form four two-SNP geno-

types, denoted by {G G g j
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global U statistics for each of these grouping strategies
using Eq. (4) and choose the one with the largest U sta-
tistics. It should be noted that, if the same SNP from
step 1 is chosen in step 2, then only three single-SNP

genotypes will be formed, denoted by { G AA1
2( ) = ,

G aa3
2( ) = , G aa3

2( ) = }. As the algorithm moves forward,

the U statistic is expected to increase until groups can-
not be split further. This results in a series of models
with different numbers of groups. The best model, with
the appropriate number of groups, can be determined
by using a 10-fold cross-validation procedure. The U
statistic of the best model is calculated using the whole
data set, and the significance of its association can be
obtained using permutation. For each permutation repli-
cate, the same procedure (including the aggregation pro-
cess and model selection) is applied to calculate the U
statistics. An empirical p-value, which accounts for
inflated type I error resulting from model selection, can
be calculated by using a large number of permutations.

Results
We applied the proposed method to analyze the quantita-
tive trait Q1 in the GAW17 mini-exome data. Thirty-nine
SNPs, located in nine genes, were associated with trait Q1.
The minor alleles of these SNPs were associated with the
higher mean of Q1, and their frequencies ranged from
0.07% to 16.5%. We first adjusted the trait by age, using a
linear regression model. The residual scores were then
used for our association studies. Based on 200 replicates,
we conducted a gene-based association study for each of

the nine causal genes. For each gene, the traits were per-
mutated 1,000 times, to generate the empirical null distri-
bution of the U statistics. We then evaluated the power of
our method by counting the number of replicates whose
U statistics exceeded the 95th percentile of the null distri-
bution. A similar analysis was also conducted using
QuTie, version 0.2. The threshold for rare variants was
chosen as a minor allele frequency (MAF) less than 0.01.
The performance of the two methods varied according to
the number of SNPs within the genes, the number of cau-
sal SNPs, and their effect sizes. We divided the nine genes
into five groups accordingly (Table 1).
We found that both methods had a high power to detect

the association for genes in group 1 and group 2. As a spe-
cial case, gene VEGFC had only one rare variant, and
therefore no selection was necessary. Both methods were
able to detect this SNP because of its large effect size. The
aggregating U-test showed a significant power improve-
ment over QuTie for genes in group 3. For example, gene
ELAVL4 was composed of seven rare variants and three
common variants, among which only two rare variants
were causal. The individual effects of these variants,
though relatively high (0.769 and 0.304), were mitigated by
collapsing them with other SNPs, which led to low power
by QuTie. In addition, both methods had high power to
detect the association for genes in group 4, whereas QuTie
attained higher power than the aggregating U-test.
Because most of the rare variants in the gene were causal
and their effects were relatively large, it would be ideal to
collapse all the variants. In such a case, the aggregation
would have a smaller advantage because the selection pro-
cess would introduce additional variations. However, we
believe that this is not a common scenario in a real data
application. Finally, both methods had low power to detect
the association for genes in group 5. For both genes, the
selection of rare variants did not show any advantage
because of the low effect of each functional rare variant.

Discussion
Our method has two major advantages: (1) It can substan-
tially improve the testing power when only a small propor-
tion of rare variants under examination are functional; and
(2) it collapses only a subset of selected rare variants that
are potentially trait related. Therefore it can help to iden-
tify disease-susceptibility rare variants, which makes our
results easier to interpret and replicate in follow-up stu-
dies. The existing methods, such as QuTie, collapse all
rare variants within the same genomic region and analyze
the rare and common variants without differentiating the
functional and nonfunctional variants. As illustrated by
our analysis, such methods are subject to low power when
a significant proportion of the variants in the genomic
region are not trait related. Nevertheless, they could have
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comparable or even higher power over our method when
most (or all) of the variants within a gene are trait related.
Moreover, because existing methods do not adopt a model
selection algorithm to eliminate the noise loci, they are
computationally faster than the proposed method. How-
ever, if we make the same assumption as existing methods
(i.e., that all the variants are associated with disease), then
we could also use the asymptotic result of the proposed
method to test for association without model selection
and permutation [7]. Under the null hypothesis, asympto-
tically the global U statistic has a mean of zero and follows
a normal distribution.
We also note that the aggregation of rare variants is

different from the forward selection of multi-SNP geno-
types. During the aggregation process, the supervariant
always forms two genotype groups: one with all rare
alleles and the other without any rare allele. The corre-
sponding U statistic first increases by adding the risk rare
alleles and then decreases when nonrisk rare alleles are
added. On the contrary, the number of genotype groups
in the forward selection process keeps increasing as the
algorithm moves forward, which results in an increasing
global U statistic (i.e., the model with the largest number
of genotype groups has the highest global U statistic).

Therefore the cross-validation procedure is necessary for
forward selection to avoid overfitting the data. The cross-
validation procedure, however, is not practical for the
aggregation of rare variants, because their low MAFs may
cause the absence of rare alleles in the testing set.

Conclusions
The proposed aggregating U-test provides a powerful
tool for genetic association studies with both common
and rare variants. Our method could also be useful for
identifying disease-susceptibility variants underlying
quantitative traits.
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3/7 1/1
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1/5 0/1

4d KDR 10/16 0.99 0.840 0.038
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4/15 1/3
a Common SNPs within a gene are causal with large effect.
b All rare SNPs within a gene are causal with large effect.
c A small proportion of rare variants are causal.
d A majority of rare variants are causal.
e A small proportion of rare variants are causal, each carrying a small effect.
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