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Abstract

We propose a two-stage design for the analysis of sequence variants in which a proportion of genes that show
some evidence of association are identified initially and then followed up in an independent data set. We compare
two different approaches. In both approaches the same summary measure (total number of minor alleles) is used
for each gene in the initial analysis. In the first (simple) approach the same summary measure is used in the
analysis of the independent data set. In the second (alternative) approach a more specific hypothesis is formed for
the second stage; the summary measure used is the count of minor alleles in only those variants that in the initial

data showed the same direction of association as was seen overall. We applied the methods to the simulated
quantitative traits of Genetic Analysis Workshop 17, blind to the simulation model, and then evaluated their
performance once the underlying model was known. Performance was similar for most genes, but the simple
strategy considerably out-performed the alternative strategy for one gene, where most of the effect was due to
very rare variants; this suggests that the alternative approach would not be advisable when the effect is seen in
very rare variants. Further simulations are needed to investigate the potential superior power of the alternative
method when some variants within a gene have opposing effects. Overall, the power to detect associations was
low; this was also true when using a more powerful joint analysis that combined the two stages of the study.

Background

Genome-wide association studies focus on genetic loci
with common minor allele frequencies (MAFs > 0.05) and
are not designed to detect the effects of rare variants.
However, rare variants contribute to complex diseases and
might be detectable using resequencing data. Several
methods for analyzing this type of data have been pro-
posed [1-4], but this research area is still in development
and many questions remain unanswered. Given the cost
burden of sequencing a large number of subjects across
the entire exome or the whole genome, we postulate that
in a typical study a relatively small sample can be analyzed
comprehensively, following up on regions of interest in a
second data set. The test statistic threshold in the first
stage should not be too restrictive, to avoid false-negative
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results, while the second stage threshold should meet
stringent criteria, to minimize false-positive results.

Using the simulated Genetic Analysis Workshop 17
(GAW17) data [5], we conducted analyses of quantitative
traits Q1, Q2, and Q4 to evaluate the efficacy of this
approach. We compared two approaches, one testing for
overall evidence of association with the gene exactly as in
the first analysis and the other forming a more specific
hypothesis based on the initial results. Once the original
simulation model was disclosed, we determined power
and false-positive rates.

Methods

Simple strategy

For each sequence variant i in gene j, let x;; be the num-
ber of copies of the minor allele (defined as the allele with
population allele frequency less than 0.5) carried by indivi-
dual & (so x; = 0, 1, or 2). Suppose that gene j includes #;
sequence variants; then a summary measure for gene j in
individual k is formed by counting the number of minor
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For each replicate, we randomly split the sample into
an initial set of 349 (50%) subjects and an independent
set consisting of the remaining 348 subjects. We tested
association between each of the three simulated quanti-
tative traits Q1, Q2, and Q4 and each gene in the initial
set using a linear regression model, regressing the trait
on Xj; and adjusting for population in three categories
(156 Europeans [CEPH population or Tuscan], 321
Asians [Chinese or Japanese], and 220 Africans [Luhya
or Yoruba]). Genes showing evidence of association with
the trait at a significance level of 0.01 were carried for-
ward to the second stage of the analysis.

Suppose that, for a particular trait and replicate, N
genes were carried forward to the second stage. These
genes were then tested in the same way in relation to
the trait, using the remaining data for that replicate.
Genes were regarded as showing association in this sec-
ond stage if they met the Bonferroni-corrected signifi-
cance level of 0.05/N. Each analysis (first and second
stage) was repeated for each trait in the 200 replicates.

Alternative strategy: more specific hypothesis

We investigated an alternative strategy in which the N
genes identified in the initial data set were tested in a
different way in the remaining samples. Instead of sum-
ming all minor variants in the gene, we used informa-
tion on which variants were positively or negatively
related to the trait in the initial data set. Specifically, for
each of the N genes, the direction of association
between the sum of the variants and the trait in the
initial set was ascertained (i.e., whether they were posi-
tively or negatively correlated). If they were positively
correlated, we identified the subset of individual variants
that were positively related to the trait in this data set (i.
e., positive regression coefficient but not necessarily sta-
tistically significant).

Let I;; be an indicator variable such that J; = 1 if var-
iant i is positively related to the trait and J; = 0 other-
wise (including for variants not observed in the data
set). We calculated a new summary measure for each
gene, summing over just these variants:

1j

X = z Xijl - ()

i=1

In the second stage, we test%d association with the
trait by regressing the trait on e, adjusting for popu-
lation as before. Similarly, we analyzed negatively related
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variants if the gene and the trait were overall negatively
correlated.

As in the simple analysis, we regarded genes as show-
ing association in this second stage if they met a signifi-
cance level of 0.05/N. Results are presented for each
quantitative trait for each gene that showed consistent
evidence of association in the first-stage analysis (in at
least 120 of the 200 replicates). Results are also pre-
sented for the genes that were simulated to be asso-
ciated with each trait. Analyses were conducted using
programs written for this purpose in R (R Development
Core Team, Vienna).

Comparison with joint analysis of the two-stage design
We also considered the increase in power that could be
obtained by carrying forward the samples from the first
stage into the final analysis, that is, by carrying out a
joint analysis of the total data set for the N genes pas-
sing stage 1 but applying a Bonferroni correction for the
original number of 3,205 genes. For this design (with an
equal number of samples in the two data sets and an
initial significance level of 0.01), Skol et al. [6] has
shown that this correction approximately preserves the
overall type I error rate.

Results

Q1, Q2, and Q4

Table 1 lists the 12 genes that show association with Q1 at
a significance level of 0.01 in the first stage of the analysis
in at least 120 replicates. The FLT1 gene reaches this level
of significance in 195 replicates, indicating a power of
97.5% with a sample size of only 349. The next two col-
umns in Table 1 give the number of times a significant
association is seen in the follow-up analysis using the sim-
ple approach and using the alternative strategy based on a
more specific hypothesis. For most genes the performance
of the two strategies is similar, but association is detected
considerably fewer times for KDR using the alternative
strategy compared to the simple strategy (39 vs. 75 repli-
cates; see later discussion).

In the list of our 12 top findings for Q1 (Table 1), 10
are false positives. With the exception of PRR4, all these
genes are on the list of 695 genes found by others to be
consistently spuriously associated with the simulated dis-
ease affection status, which was correlated with Q1 [7].
These genes were highly significantly more correlated
with the single-nucleotide polymorphisms (SNPs) simu-
lated to be causal than were the other genes in the data
set [7].

The final column in Table 1 shows for comparison the
number of times the joint analysis of the whole data set
from the replicate is significant after adjusting for 3,205
tests and given that the gene passes the stage 1 analysis
threshold. It can be seen that this joint comparison
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Table 1 Analysis of genes in relation to trait Q1 using the simple strategy, the alternative strategy based on more
specific hypotheses, and the combined analysis with appropriate adjustment for multiple testing

Number of significant replicates

Gene Chromosome  Number of variants in Number of times passing stage 1 Simple Alternative Joint
gene threshold strategy strategy analysis
FLT1 13 35 195 188 187 195
OR2734 1 16 166 79 77 140
KDR 4 16 165 75 39 146
PRR4 12 34 159 57 60 117
JAK1 1 12 150 49 45 105
CYP4F3 19 12 149 37 38 97
TAS2R48 12 12 148 41 53 102
ZNF91 19 9 145 45 42 87
HLA-B 6 28 143 33 36 89
INSR 19 16 138 42 39 9
LOC645118 19 5 125 24 21 73
CEST 16 30 123 28 32 64

Only genes significant in the first analysis (at the 1% level) in at least 120 of the 200 replicates are shown. The two genes in bold were simulated to be

associated with the trait. All analyses are adjusted for population stratification.

method has considerably more power than either of the
other approaches, in agreement with what has been
shown previously [6].

Seven other genes associated with Q1 in the simulation
model were not detected in our analysis using any
approach. Although all met the stage 1 significance level
of 0.01 in at least two replicates (ranging from 2 for
HIF3A to 28 for VEGFC), they were never significant in
the follow-up analysis after applying the Bonferroni cor-
rection in the simple or alternative method. (With the
joint analysis, only FLT4 ever reached significance and this
happened in only one of the 200 simulations.)

All 13 genes simulated to be associated with Q2 passed
the initial threshold in at least one replicate (ranging
from 1 in 200 replicates for PLAT and PDGFD to 70 in
200 replicates for VNNI). However, using the simple
two-stage method, only VNNI ever reached our criterion
for significance in stage 2 (in 10 replicates, among the 70
in which it passed stage 1), and only VNNI and SIRTI
ever reached significance under the alternative method
(12 out of 70 times and 1 out of 22 times, respectively).
Even when carrying out the joint staged analysis, VNN1
was significant in only 20 simulations, and no other gene
was significant in more than 3 simulations. For this trait,
power to detect associations was very low, and there
were few false positives.

For trait Q4, no genetic effect was simulated. Because of
the Bonferroni corrections applied, we would expect to
find one gene meeting the final significance threshold in
any particular replicate 5% of the time. In both the simple
two-stage and joint analyses, the total number of signifi-
cant findings in 200 replicates was 9 (experiment-wise
error rate of 4.5%), which is consistent with expectation.

This suggests that the strategies have correct statistical
type I error rates and that the false-positive results
observed for Q1 are a result of correlation between genes.

Determinants of power to detect association

Using any strategy, we detected only a small number of
the genes that were simulated. As shown in Figure 1A,
the two genes we identified with highest power (FLT1
and KDR) contain 11 and 10 associated variants, respec-
tively, with a total MAF greater than 0.1. Only two
other associated genes, BCHE and SREBFI, have as
many associated variants (13 and 10, respectively), but
for these genes the total MAF of the associated variants
is still low. The next most frequently detected gene was
VNNI, which, along with VNN3, is one of only two
other genes (both associated with Q2) for which the
total MAF of the associated variants exceeds 0.1. Figure
1 shows not only that these genes contain fewer variants
than the two genes detected but also that the average
variant effect (simulated regression f coefficient) was
smaller in these genes.

Unsurprisingly, the critical gene characteristics deter-
mining the power to detect an effect are the number of
associated variants per gene, their total MAF, and the size
of individual variant effects. However, the power to detect
KDR was remarkably lower than the power to detect FLTI
(Table 1), despite a similar number of variants (10 vs. 11),
a higher total MAF of associated variants (0.19 vs. 0.12),
and a comparable mean variant effect (0.54 vs. 0.52; see
Figure 1). Figure 2 plots each variant effect within FLT1,
KDR, and VNNI1 (simulated regression 8 coefficient)
against its frequency. The KDR variants with strong effects
(B > 0.3) are all extremely rare, in fact with no more than
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Figure 1 Properties of the associated variants within a gene. (A) Sum of MAFs of associated variants within each of the simulated genes (9
genes for Q1 and 13 genes for Q2) as a function of the number of associated variants. (B) Mean simulated variant effect within the four genes
with highest total MAF.

three instances of each allele observed in the total data,
whereas three of the FLT1 variants with strong effects are
much more common. The rarity of the KDR variants has a
drastic effect on power, although this is less marked in the
combined analysis.

The two strategies for follow-up analysis performed
similarly for FLT1 and VNNI but not for KDR. This is
likely again to be because most of the associated var-
iants in KDR are rare; the variants that are observed in
the initial data set and that are the basis of the “specific
hypothesis” of the alternative strategy may not be

observed at all in the second data set. Conversely other
rare variants seen only in the second data set will not be
included in the test because of lack of initial information
on their relevance.

Discussion and conclusions

The ability to resequence the genome or exome opens
up new possibilities for the discovery of trait-associated
variants whose frequencies are too rare for them to be
likely to be discovered using genome-wide association
studies. However, sequencing a large number of samples
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Figure 2 Simulated variants effect (regression B coefficient) in relation to their MAFs within FLTT, KDR, and VNNT
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is likely to remain expensive for the foreseeable future.
We considered ways in which such approaches might be
made more efficient by applying two-stage strategies. In
our approach, only a small fraction of the genes (on
average 140 [4.4%] for Q1, 50 [1.6%] for Q2, and 34
[1.1%] for Q4) would have to be resequenced in the sec-
ond set of samples. We investigated whether further
efficiency savings or possible improvements in power
could be made by considering only certain variants
within those genes, on the basis of the direction of asso-
ciation in the initial sample. We expected that the
method based on specific variants might improve power
by removing from the gene’s summary statistic the noise
variants that were not related to the trait (or even var-
iants having an opposing effect); we also expected that
power would be lost if variants were present in the
training data set that were not found in the test set (pri-
vate or very rare variants). Except in the case of one
gene (KDR), the alternative method worked just as well
as the simple strategy, even though less genotyping was
required because fewer variants needed to be analyzed.
Our analyses were conducted blind to the simulation
models, but in fact in these models minor alleles were
only ever associated with increases in trait values.
Clearly, in this situation the alternative method we con-
sidered would lose some of its potential advantages.
Variants with no relationship to the trait would still be
removed from the summary statistic (with probability
0.5), but there would be no variants with opposing
effects to remove.

Because in the GAW17 data the genotypes were
unchanged across replicates, we selected both the train-
ing and the retest data sets from within one replicate. Of
course, if extensive sequence data were available on a
sample of size 697, analysis of the whole cohort making
use of all data in a single stage would be considerably
more powerful than any two-stage strategy, but our pur-
pose was to assume that the cost of large-scale sequen-
cing was the main limitation to increasing sample size.
The joint analysis showed that, even with a staged design,
with consequent savings in sequencing effort, if data
were available on the selected genes from both stages,
then it would be more powerful to incorporate all the
data into the final analysis. However, there would still be
a limitation in that few of the truly associated variants
would pass the initial threshold. Power to detect rare var-
iants was low with a sample size of 349, unless the total
MAF of all the associated variants was high and the effect
size strong enough. It would therefore be desirable to use
a considerably larger sample size than this for the
hypothesis-generating stage of a study, although it can be
reasonably assumed that the cost of sequencing will stay
high for some time, which makes the availability of
extensive sequence data in large samples unlikely. In the
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meantime, efforts must be devoted to the development of
novel, more powerful methods. A recent study [8] high-
lights the interest in two-stage designs, including a more
in-depth sequencing of some genes or regions in the final
stage.

The method we used to summarize the variants within
a gene in the simple strategy included all minor alleles
in the gene, which is unlikely to be the most powerful
approach. In the alternative strategy (summing over spe-
cific variants), the approach we used to restrict the ana-
lysis to variants showing a beneficial (or deleterious)
effect while reducing the impact of neutral variants was
similar in spirit to the data-adaptive summation method
of Han and Pan [9] (see also Dering et al. [10]). Various
other approaches to reduce the number of variants
tested have been proposed, such as setting a threshold
allele frequency, including only nonsynonymous SNPs,
or applying weighting schemes. Our purpose was to
compare the specific-variant strategy with an analysis
that does not utilize the information from the first-stage
analysis; this strategy could easily be adapted to include
further constraints on the variants, or weighting
schemes, to derive alternative summary measures.

The simple strategy out-performed the alternative strat-
egy for one gene, for which only very rare variants had a
strong effect, suggesting that the alternative approach
would not be advisable where the effect is mainly attribu-
table to very rare variants. Further simulations are needed
to investigate the potential superior power of the alterna-
tive method when some variants within a gene have
opposing effects. Consistent with previous findings, joint
analysis of the stage 1 and stage 2 samples with appropri-
ate correction for multiple testing is more powerful than
either of the methods in which the follow-up data set is
analyzed separately; this suggests that if raw data for the
initial samples are available, joint analysis is the preferred
method. It would be of interest to apply the alternative
specific-variant method to joint analysis of the two stages,
but it would be nontrivial to adjust the significance level
appropriately (without complex simulation), because the
stage 1 samples would be used both to define and to test
the hypothesis.
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