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Abstract

Our goal is to identify common single-nucleotide polymorphisms (SNPs) (minor allele frequency > 1%) that add
predictive accuracy above that gained by knowledge of easily measured clinical variables. We take an algorithmic
approach to predict each phenotypic variable using a combination of phenotypic and genotypic predictors. We
perform our procedure on the first simulated replicate and then validate against the others. Our procedure
performs well when predicting Q1 but is less successful for the other outcomes. We use resampling procedures
where possible to guard against false positives and to improve generalizability. The approach is based on finding a
consensus regarding important SNPs by applying random forests and the least absolute shrinkage and selection
operator (LASSO) on multiple subsamples. Random forests are used first to discard unimportant predictors,
narrowing our focus to roughly 100 important SNPs. A cross-validation LASSO is then used to further select
variables. We combine these procedures to guarantee that cross-validation can be used to choose a shrinkage
parameter for the LASSO. If the clinical variables were unavailable, this prefiltering step would be essential. We
perform the SNP-based analyses simultaneously rather than one at a time to estimate SNP effects in the presence
of other causal variants. We analyzed the first simulated replicate of Genetic Analysis Workshop 17 without
knowledge of the true model. Post-conference knowledge of the simulation parameters allowed us to investigate
the limitations of our approach. We found that many of the false positives we identified were substantially
correlated with genuine causal SNPs.

Background
Our goal is to identify single-nucleotide polymorphisms
(SNPs) that add predictive information for the phenotypic
outcomes above that given by just the other phenotypes.
This aim is motivated by the use of genetic testing in a
clinical setting, where SNP genotypes can be used to iden-
tify a patient’s risk level better than easily measured clini-
cal variables alone [1].
Our approach combines several well-known statistical

procedures: stability selection, random forests, the least
absolute shrinkage and selection operator (LASSO), and
logistic regression. Random forests are an algorithmic
machine learning technique based on a majority vote
among a number of randomly varying trees [2,3]. The

algorithm generally gives good predictive accuracy at the
expense of interpretability. It has the useful property of
providing an importance score for each variable deter-
mined by how worse prediction becomes when the given
variable is removed from the analysis. This score allows us
to add an additional filtering step at the outset to remove
SNPs that do not provide useful predictive information.
The importance score is insensitive to correlation or coli-
nearity between variables (for example, see section 11.1 of
Breiman [4]), allowing us to ignore linkage effects until a
smaller set of variables is under consideration. Because of
its good computational speed, we use the Random Jungle
software, which was developed for a previous Genetic
Analysis Workshop [3,5,6].
The LASSO procedure is a well-regarded approach to

variable shrinkage and selection [3,7,8]. Although the
required tuning parameter can be chosen by cross vali-
dation [9], in our experience too many uninformative
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variables can result in the lack of a global minimum
deviance, thus making this parameter difficult to use.
Our initial use of random forests minimizes this
problem.
Multicolinearity causes regression models to fail, so

we follow the example set by the authors of the PLINK
software [5] and filter data based on variance inflation
factors (VIFs). Population substructure can also be an
issue [10], and we briefly investigated this using princi-
pal components analysis.
To help protect against false positives and improve the

generalizability of results, we use a consensus approach
involving multiple subsamples. Subsamples (without
replacement) from a single trial may give estimates with
improved stability [11]. It has been suggested that sam-
ples of size n/2 perform well [11].
The true simulation model is described by Blangero

et al. [12]. An overview of the use of machine learning
methods in genetic epidemiology is given by Dasgupta
et al. [3].

Methods
Combination of approaches
When preliminary analyses were confined to the SNPs
only as predictors, we found that the LASSO procedure
was unable to find a global minimum cross-validation
error to select the shrinkage parameter (left-hand panel
of Figure 1). Our use of random forests to prefilter the
SNPs was driven by the need to find a minimum error
(center panel of Figure 1). Alternatively, adjustment for
clinical variables also achieved this (right-hand panel of

Figure 1). We applied the random forest importance
scores first because this procedure does not exclude mul-
tiple correlated variables. Because the LASSO assumes
independent predictors, we removed highly correlated
variables by means of VIF filtering.

Procedure
We removed SNPs that had a minor allele frequency
(MAF) less than 0.01 or that failed a Hardy-Weinberg
equilibrium test, leaving 4,755 SNPs for analysis. Random
samples of size 348 were taken without replacement from
the 679 subjects in the first replicate of the Genetic Analy-
sis Workshop 17 (GAW17) data set. This procedure was
repeated 10 times, with subsequent analyses performed on
each subsample. We used a principal components analysis
to investigate possible population structure within the
SNPs and identified three clear groups that corresponded
almost exactly with the three major ethnic groups of the
subjects (African, Asian, and European). Many analyses
were performed both with and without adjusting for ethni-
city to determine whether this was an important confoun-
der. In general, we found that ethnicity effects disappeared
once the SNPs were taken into account (interestingly, a
random forest fitted to the SNP data could perfectly pre-
dict these ethnicity groups).
We applied the following procedure to each of the sub-

samples (see Figure 2): (1) We used the Random Jungle
program to perform a random forest analysis with 1,000
trees and a sample of 1,000 variables at each node. We
assessed variable importance using the gene identification
by NMD (nonsense mediated decay) inhibition (GINI)

−9 −8 −7 −6 −5 −4 −3

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

AFFECTED − SNPs only

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

●●●●●●●●●●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●

1584 1188 905 742 652 590 549 515 476 456 413 377 310 233 121 28 7

−8 −7 −6 −5 −4 −3

1.
10

1.
15

1.
20

1.
25

AFFECTED − SNPs pre−filtered

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

87 87 87 86 85 85 83 81 81 79 77 77 75 72 68 57 45 29 18 3

−8 −7 −6 −5 −4 −3 −2

0.
8

1.
0

1.
2

1.
4

AFFECTED − SNPs and clinical variables

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

385 361 335 318 307 297 274 255 223 188 136 71 19 7 4 3 3 2 1 0

Figure 1 LASSO cross-validation plots for affected status. Cross validation fails to identify an appropriate shrinkage parameter by using just
the 4,755 SNPs (left-hand panel). A parameter can be chosen when there is additional adjustment for clinical variables (center panel) or when
SNPs are prefiltered according to random forest importance score.
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index, which largely matched other calculated impor-
tance indexes. (2) We counted the number of times each
variable appeared in the 100 most important variables.
(3) We chose a cutoff to reduce the set of variables,

guided by the upper quartile of inclusion counts. A cutoff
resulting in a set of roughly 100 SNPs was found to work
well for subsequent stages. (4) Variables were iteratively
dropped until none had a VIF greater than 10 when

Figure 2 Outline of our approach
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regressed on the others. Because of the lack of substantial
pairwise correlation between SNPs, few variables were
dropped at this stage. (5) Within each replicate, we used
cross validation to choose an appropriate penalty factor
for the LASSO. This was done with the cv.glmnet() func-
tion in the glmnet R package [9]. The “minimum MSE +
1 standard error” rule was most frequently found to lead
to models that were sufficiently sparse to not obviously
overfit the data. The random forest filtering step was
necessary to ensure a global minimum model-fitting
error in the cross-validation step. (6) We counted the
number of times each variable was included in each
LASSO model (i.e., the number of times each variable
had a nonzero estimated coefficient). (7) We chose
another cutoff. Once again, the upper quartile was found
to be a good choice. (8) Finally, we fitted an unpenalized
linear or logistic regression model using all 697 subjects.
We used Bayesian information criterion (BIC) backwards
selection to remove variables that did not contribute to
the model fit. The LASSO step ensured that the maximal
model at this stage (before backwards selection) had non-
zero deviance and minimized the chance that fitted prob-
abilities were 0 or 1.
We assessed the predictive accuracy over the 200

replicates of the GAW17 data set using the mean-square
error (for continuous variables) or the proportion of
incorrect predictions (for affected status). Models were
fitted both with and without the SNPs to assess whether
their inclusion improved accuracy.

Results
Predicting Q1
By far the most successful application of our procedure
was the prediction of Q1. We observed how frequently
SNPs were among the 100 most important variables iden-
tified by the random forest. Only 2 SNPs appeared in all
10 subsamples (C13S522 and C13S523). Keeping variables
that appeared at least three times (the upper quartile of
this distribution) left 90 remaining SNPs. Checking the
VIFs caused one SNP to be dropped to avoid colinearity.
Similarly, we observed how frequently each variable
remained in the model after a subsequent LASSO selec-
tion. The upper quartile of this distribution was four,
which was used as a cutoff for inclusion in the final model.
We fitted a linear regression using the remaining vari-

ables. After BIC backwards selection, we arrived at the
“Model with SNPs” in Table 1. These fitted coefficients
were used to predict Q1 in each of the other replicates.
This gave a set of 199 mean-square prediction errors
over the remaining replicates (including the first repli-
cate). We used the median of these as a robust indication
of model performance: 0.6899. We refitted the model
without the SNPs and similarly validated it, finding a
median mean-square error of 0.9868 (Table 1, “Model

without SNPs”). This demonstrates that a substantial
reduction in prediction error can result from including
the identified SNPs, suggesting that we found a set of
SNPs with good predictive value.

Post-conference comparisons
Because Q1 was the most amenable to prediction, we
decided to use this trait to compare various approaches
in light of the true simulated model. To assess the effect
of false positives, we fitted a model using only the three
SNPs on chromosome 13 known to be casual (with Q1,
Age, and Smoke) and found a median mean-square error
of 0.6460 over the replicates. In addition, we compared
these three SNPs to those SNPs chosen by a simple one-
SNP-at-a-time genome-wide association approach with
Bonferroni correction. The chosen SNPs were C12S707,
C12S711, C12S2028, C12S2798, C13S522, and C13S523
(the chromosome 13 SNPs are genuinely causal). This
model had a median mean-square error of 0.6651, with a
slight performance improvement over our consensus
approach.

Table 1 Final consensus models for Q1 with and without
SNPs

Estimate Standard error p-value

Model with SNPs

Intercept −1.45 0.11 <2 × 10−16

C10S4601 −0.24 0.10 0.020

C10S4927 0.10 0.04 0.020

C12S2798 −0.07 0.05 0.158

C13S431* 0.45 0.15 0.004

C13S522* 0.80 0.13 1.39 × 10−9

C13S523* 0.64 0.09 9.52 × 10−12

C14S2902 0.15 0.05 0.002

C18S794 0.14 0.05 0.004

C19S5879 0.11 0.04 0.006

C1S4244 −0.37 0.16 0.018

C1S7427 0.10 0.04 0.013

C4S1220 0.07 0.04 0.081

C5S221 0.11 0.05 0.23

C6S4003 −0.24 0.13 0.057

C6S469 0.30 0.14 0.031

C7S2893 0.09 0.05 0.062

C8S2699 −0.20 0.13 0.114

C9S13 0.13 0.08 0.111

Q2 0.26 0.03 <2 × 10−16

Age 0.02 0.00 <2 × 10−16

Model without SNPs

Intercept −0.93 0.08 <2 × 10−16

Q2 0.27 0.03 2.94 × 10−15

Age 0.02 0.00 <2 × 10−16

Smoke 0.59 0.08 1.01 × 10−14

Asterisks indicate a genuine causal variant.
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Predicting Q2, Q4, and affected status
The analysis to predict the traits Q2, Q4, and affected
status was less successful. Although our procedure was
motivated by the attempted analysis of affected status,
we were unable to find a model that substantially
reduced prediction error. This was also the case for Q2
and Q4, although we did identify a true causal SNP for
Q2 (C6S5449).

Discussion and conclusions
We found that SNPs added predictive information only
when Q1 was used as the outcome. Removing SNPs
with a low MAF left Q1 as the only outcome that had
common enough variants with large enough effect sizes
for our approach to be successful. Many of the effect
sizes seen in the true simulated model were so small as
to be often overshadowed by spurious associations (evi-
denced by the noncausal SNPs with smaller p-values
than genuine causal ones).
It is interesting to note that only 15 of the true causal

SNPs were included in our analysis after MAF filtering,
and only 4 of these were in the top 100 important SNPs
from the random forest plot (predicting Q1). These four
SNPs correspond to the four correctly identified SNPs.
Although one SNP is in the model to predict Q2, this
variable is itself associated with Q1 (with an observed
correlation of 0.24 in the first replicate). All true identi-
fied SNPs had a MAF less than 3%. The choice of using
1,000 variables at each node in the random forest was
confirmed by a separate cross-validation study. With
hindsight it appears that this was required to ensure
that the SNPs with strong effect (on chromosome 13)
were selected often enough to reduce prediction error.
We had hoped that the consistent use of resampling-

based procedures would stop overfitting of the models
on the first replicate. This worked to the extent that pre-
diction accuracy did not become substantially worse by
including SNPs for any of the outcomes. The use of sub-
sampling was preferred over simple cross validation
because it gave a larger sample size (n/2) for each train-
ing set with the ability to increase stability by taking
more subsamples. However, it would be preferable to
have objective criteria for deciding whether a variable
should be included at each stage rather than accepting
the choices we were forced to make based on computa-
tional tractability.
To explain some of the false positives, we calculated

correlations between genuine causal SNPs for the con-
sensus model and the naive genome-wide association
study (Table 2). Many SNPs identified in our analyses
had substantial observed correlations (using our linear
SNP coding) greater than 0.2, nearly always across chro-
mosomes. The correlation between SNPs on chromo-
some 12 and those on chromosome 4 (causal for Q1)

potentially explain the cluster of false positives picked
up by the genome-wide association study. Many SNPs
picked up by the consensus approach were correlated
with causal SNPs. The multiple-SNP analysis of our
consensus approach minimized this to a reasonable
degree, identifying only a single SNP on chromosome
12. Because of our success in predicting Q1, we cannot
conclude that the use of random forests as a prefiltering
step is completely without merit. If the clinical variables
were unavailable, this approach would allow the LASSO
model to be fitted.
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Table 2 Strongest correlations between false positives
and genuine causal SNPs

Outcome Identified SNP Causal SNP Correlation

Consensus modelsa

Q1 C9S13 C4S1878 0.21

C9S13 C4S1884 0.23

C1S7427 C6S5380 0.22

C12S2798 C6S5380 −0.28

C8S2699 C6S5426 0.21

C1S7427 C13S523 0.21

C12S2798 C13S523 −0.27

C12S7427 C14S3706 −0.27

Q4 C10S6324 C13S523 0.23

Affected C19S3379 C4S1878 −0.21

C18S2310 C6S5426 0.26

C19S3379 C6S5426 0.22

GWAS for Q1b C12S707 C4S1878 0.27

C12S711 C4S1878 0.28

C12S707 C4S1884 0.26

C12S707 C6S5380 0.21

C12S711 C6S5380 0.21

C12S2798 C6S5380 −0.28

C12S707 C13S522 0.21

C12S711 C13S522 0.21

C12S707 C13S523 0.45

C12S711 C13S523 0.4

C12S2028 C13S523 0.32

C12S2798 C13S523 −0.27

C12S707 C14S1734 0.31

C12S711 C14S1734 0.26

C12S2028 C14S1734 0.25

C12S707 C18S2492 0.41

C12S711 C18S2492 0.26
a SNPs identified by our procedure.
b SNPs identified by a naïve genome-wide association study for Q1.
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