
PROCEEDINGS Open Access

Gene-based multiple trait analysis for exome
sequencing data
Jingyuan Zhao, Anbupalam Thalamuthu*

From Genetic Analysis Workshop 17
Boston, MA, USA. 13-16 October 2010

Abstract

The common genetic variants identified through genome-wide association studies explain only a small proportion of
the genetic risk for complex diseases. The advancement of next-generation sequencing technologies has enabled the
detection of rare variants that are expected to contribute significantly to the missing heritability. Some genetic
association studies provide multiple correlated traits for analysis. Multiple trait analysis has the potential to improve the
power to detect pleiotropic genetic variants that influence multiple traits. We propose a gene-level association test for
multiple traits that accounts for correlation among the traits. Gene- or region-level testing for association involves both
common and rare variants. Statistical tests for common variants may have limited power for individual rare variants
because of their low frequency and multiple testing issues. To address these concerns, we use the weighted-sum
pooling method to test the joint association of multiple rare and common variants within a gene. The proposed method
is applied to the Genetic Association Workshop 17 (GAW17) simulated mini-exome data to analyze multiple traits.
Because of the nature of the GAW17 simulation model, increased power was not observed for multiple-trait analysis
compared to single-trait analysis. However, multiple-trait analysis did not result in a substantial loss of power because of
the testing of multiple traits. We conclude that this method would be useful for identifying pleiotropic genes.

Background
The common disease/common variant hypothesis states
that common variants contribute substantially to com-
mon diseases [1,2]. Following this hypothesis, genome-
wide association studies have successfully detected asso-
ciations with common variants. However, such common
variants explain only a small proportion of the phenoty-
pic variation. Many of the as yet undetected common
variants may have small effect sizes; therefore they are
not expected to contribute significantly to the missing
heritability. An alternative theory, the common disease/
rare variant hypothesis, argues that a large number of
rare variations with moderate to high penetrances
account for genetic susceptibility to common disease
[1]. Recently, deep-resequencing studies of candidate
genes have provided some evidence supporting the com-
mon disease/rare variant hypothesis [3]. Although var-
ious statistical methods have been developed to detect

associations with common variants for common
diseases, these methods are inefficient for rare variants
because of the small number of observations for each
single rare variant. One feasible method for rare variant
analysis is to pool multiple rare variants within a gene
or region and to test their joint effect. This category of
methods has been reviewed by Dering et al. [4].
Some genetic association studies examine a qualitative

trait, such as the case-control status and some additional
correlated quantitative traits. For example, a genetic
study of diabetes may examine the diabetic status and
other related phenotypes, such as body mass index and
other lipid profiles. Similarly, a glaucoma study may
explore the related endophenotypes, such as central
corneal thickness, intraocular pressure, and maximum
vertical cup-to-disc ratio. One way to analyze these data
is to perform single-trait analyses separately. An alterna-
tive way is to perform a multiple-trait analysis, which
potentially has improved power to identify the pleiotropic
variants for these traits [5,6].* Correspondence: anbupalamt@gis.a-star.edu.sg
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Univariate test statistics or p-values of multiple traits
may not be independent because of the environmental
or genetic correlations among multiple traits. Hence
some classical methods of combining independent
p-values, such as Fisher’s method, are not directly
applicable to the analysis of multiple correlated traits.
Our purpose in this paper is to develop a test statistic
for combining these correlated univariate statistics by
considering the correlation structure among multiple
traits. Motivated by a recently proposed approach [7],
we developed a gene association test to test the joint
effect of multiple variants within a gene on multiple cor-
related traits. The proposed method considers genes as
basic units and uses the weighted sum [8] to combine
the effects of multiple variants. The test statistic of
multiple traits is the linear or quadratic combination of
the univariate test statistics. It is likely that some rare
variants may contribute to only a subset of available
traits. Therefore we also conduct an alternative test on a
preselected subset of multiple traits.

Methods
Let Y = (Y1, …, Ym)

T denote the m available traits. Assume
that the gene k has L genotyped single-nucleotide
polymorphisms (SNPs), including both common and rare
ones. In the first step, the genetic score Sj of the gene k for
an individual j is calculated using the weighted sum of all
SNPs within the gene. Second, a univariate test is per-
formed to establish the association of genetic scores with
all the traits separately. Then, a gene-level association test
using the linear or quadratic combination of single-trait
univariate statistics is constructed for multiple traits.
Finally, the optimal subset of traits is selected for multiple-
trait analysis. The details of the various steps are described
in what follows.

Gene score using weighted sum
The weighted-sum gene score assigns different weights
to each variant based on the estimated allele frequencies
[8]. The score for gene k for individual j is given by:
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and mi is the total number of minor alleles for SNP
i in all n individuals. In the original study [8], the allele
frequencies were estimated only for the control subjects.
Because multiple-trait analysis needs to analyze multiple
quantitative traits as well as the disease status, in the
present study we estimate the allele frequencies using all
individuals.

Association test for multiple traits
Let S = S1, S2, …, Sn)

T denote the scores for gene k for n
individuals. The test statistic for testing the association
of S with each trait Yl (l = 1, …, m) is denoted Zl, and it
is assumed to asymptotically follow N(0, 1) under the
null hypothesis. The choice for Zl is discussed in the
Results section. The test statistic for the combined
multiple traits (CMT) method is a quadratic or linear
combination of m univariate test statistics Z1, …, Zm.
The CMT method is motivated by a recently proposed

approach [7] to test the joint effect of multiple corre-
lated SNPs. Because the test statistics Z1, …, Zm are
assumed to asymptotically follow N(0, 1), the joint dis-
tribution of the random vector Z = (Z1, …, Zm)

T is
asymptotically multivariate normal Nm(0, Σ), where Σ is
the correlation matrix of Z. The quadratic combination
statistic TCMT

Q is given by:

T T
CMT
Q = −Z Z£ 1 , (4)

and it is distributed asymptotically as a chi-square dis-
tribution with m degrees of freedom if Σ is full rank [9].
Because Σ is unknown, it is estimated by permutations.
The phenotypes are permuted, and the m univariate test
statistics are computed under each permutation. The
estimation of Σ is given by:

ˆ ( , , )£ = ×cor z zm N m1  (5)

under N such permutations. The p-value of the quad-
ratic statistic ( PQ

CMT ) can be approximated by the chi-
square quantile.
An alternative statistic for multiple correlated traits is

the linear combination statistic TCMT
L :

T
T

TCMT
L (1, , 1)

(1, , 1) (1, , 1)
= 
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Z

£
, (6)

which is distributed asymptotically as N(0, 1) [9]. Here
also the covariance matrix Σ is replaced by its estimate

£̂ , obtained from permutations. The p-value of the
linear statistic can be approximated by the standard nor-
mal quantile. Note that the linear combination statistic
TCMT

L may result in a loss of power if the direction of
association is not the same for all of the traits. By contrast,
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if the effects on these traits are in the same direction, it is
possible that the power of TCMT

L may be better than
the power of TCMT

Q . In general, TCMT
Q is more robust

than TCMT
L .

Association test for the optimal subset of multiple traits
It is likely that some of the relevant rare variants are
associated with only a subset of traits. In this case, com-
bining all the test statistics using the CMT method may
result in a loss of power because of the high degree of
freedom in the chi-square distribution. Therefore we
propose an association test for optimally combined mul-
tiple traits (OCMT) using a preselected subset of these
traits. To select the optimal subset, we use the CMT
method to calculate the p-values for all possible subsets
with at least two traits. The subset with the minimum
p-value is selected as the optimal one, denoted A*. For
any subset with at least two traits A, the quadratic com-
bination statistic TCMT-A

Q is given by:

T A
T

A ACMT-A
Q ,= −Z Z£ 1 (7)

where ZA and ΣA are the subvector and submatrix of
Z and Σ, respectively. The p-value PCMT-A

Q is obtained
from the chi-square quantile. The p-value of A*
( PCMT-A*

Q ) is given by:

P P ACMT-A*
Q

CMT-A
Q  is any possible subset with at leas= min{ : tt two traits}. (8)

To control type I error, the p-value of the OCMT
method is obtained using a permutation procedure that
is based on the permutation of phenotypes. For each
permutation π, the subset with the minimum p-value
is selected as the optimal subset, denoted A*(π). The
p-value of OCMT ( POCMT

Q ) is defined as the proportion
of permutations with P PCMT-A*

Q
CMT-A*
Q( )p ≤ , where

PCMT-A*
Q ( )p is the p-value of A*(π).

Results
We applied the CMT and OCMT methods to the
GAW17 simulated mini-exome data sets [10]. The
results are reported in two parts. In the first part, the
power of the proposed method is compared to the
power of the single-trait analysis. Initially, the CMT and
OCMT methods were proposed and applied to the
GAW17 data set without the knowledge of the simula-
tion model. These original results were presented at the
GAW17 meeting. Because the simulation model used to
create the GAW17 data was discussed at the workshop,
we reran the analysis with the knowledge of the simula-
tion model. Here we present the results of the revised
analysis based on the knowledge of the simulation
model. In the second part, we present some insights
into the false-positive rate of the CMT method.

For each gene, we tested each trait separately using
the t-test statistic of the b coefficient corresponding to
the gene score in the logistic regression (for the disease
status D) or the linear regression (for quantitative traits
Q1, Q2, and Q4) adjusted for three covariates (Age, Sex,
and Smoking status). The test statistic Zl (l = 1, …, m)
was obtained from the inverse normal distribution trans-
formation of the t-test statistic [7] and was assumed to
have a standard normal distribution.
The association tests for multiple traits were per-

formed by using the CMT method with the quadratic
combining statistic. The p-value was approximated
using the theoretical quantiles of the chi-square distri-
bution. The correlation matrices among the test statis-
tics Z1, …, Zm were estimated by 1,000 permutations. In
addition, the association test using the OCMT method
was performed, and its p-value was obtained from
another set of 1,000 permutations. Given a predefined
significance level a, the power of any association test
was defined as the proportion of 200 replicates that
returned a p-value less than or equal to a.
The samples in the GAW17 data set were collected

from six cohorts, but population stratification was not
considered in the simulation model. We performed the
association tests with and without corrections for strati-
fication. To correct for stratification, we corrected geno-
types and phenotypes using the first 10 principal
component scores derived using Eigenstrat [11].

Power of single- and multiple-trait analyses
Table 1 presents the power to detect the Q1 causal
genes at a significance level of 0.05. Without adjusting
for stratification, the univariate test for Q1 has a power
greater than or equal to 0.3 for eight genes. With the
adjustment, only four genes (FLT1, KDR, VEGFA, and
VEGFC) still have a power greater than or equal to 0.3.
For Q2 and Q4, most of the genes have a power less
than 0.1. Some of the genes also are associated with the
disease status (power ≥ 0.3).
We used the CMT method with the quadratic statistic

to perform the multiple-trait analysis for Q1 and D (Q1
+D). For all the Q1 causal genes, the power of the Q1
+D analysis was less than or comparable to the power
of the univariate test for Q1. The results show that all
Q1 causal genes may have small or no pleiotropic effects
that are insufficient to compensate for the increase of
the critical value from c0 05 1

2
. , .= 3 84 to c0 05 2

2 5 99. , .= .
Checking the GAW17 simulation model revealed that
this result is reasonable and consistent with the simula-
tion model.
Among all the Q1 causal genes, under the simulation

model, only ELAVL4 was assumed to have pleiotropic
effects on Q1 and the latent liability. Moreover, only
two rare variants in this gene with MAF = 0.000717
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(C1S3181 and C1S3182) contributed to the latent liabi-
lity. Therefore it could be difficult to detect the associa-
tion of ELAVL4 with the latent liability. The other eight
causal genes on Q1 were assumed to have no pleiotropic
effects. Therefore multiple-trait analysis did not improve
the power for Q1 causal genes. However, multiple-trait
analysis did elucidate the genetic correlation between
the disease status and related quantitative traits and
aided in the identification of the pleiotropic genes.
The p-value of the OCMT method is the minimum of

the p-values of all subsets with at least two traits. Multi-
ple-trait analysis was performed for all subsets of Q1,
Q2, Q4, and D using the CMT method. The optimally
combined multiple traits were selected on the basis of
their p-values. The power of the OCMT method was
comparable with that of the analysis for Q1+Q2+Q4+D.
The last column of Table 1 summarizes the subset with
the highest power among all the possible subsets with at
least two traits and their powers. Most of the genes had
the highest power when Q1 and D were combined. This
finding shows that the OCMT method provides a way
to select the best combination of traits, because the dis-
ease status is derived on the basis of multiple traits and
Q1 has the biggest effect size.
Table 2 summarizes the power to detect the causal

genes on Q2, given a significance level of 0.05. In gen-
eral, the univariate test for Q2 has the largest power,
and the combination of Q2 and D has relatively good
performance compared with the other subsets of multi-
ple traits. Table 3 summarizes the power to detect the
causal genes on the latent liability. After adjusting for

population stratification, all the genes had a power less
than 0.3 for both single- and multiple-trait analyses. The
power of the analysis for Q1+Q2+Q4+D was less than
or comparable to that of the single-trait analysis for D.
This result is not surprising, because only ELAVL4 has a
small pleiotropic effect on Q1; the other genes have no
effects on Q1, Q2, or Q4.

False-positive rates of single- and multiple-trait analyses
On the basis of the results adjusted for population
stratification, we calculated the false-positive rates of
single- and multiple-trait analyses. Genes with a power
greater than or equal to 0.3 were considered the asso-
ciated findings. Luedtke et al. [12] reported that 695
genes were spuriously associated with the disease sta-
tus. Excluding these 695 genes, we identified 10 causal
genes (4 on Q1, 6 on Q2, and 3 on D) and 77 false-
positive genes (62 on Q1, 14 on Q2, 0 on Q4, and 6
on D) in the single-trait analysis for Q1, Q2, Q4, and
D. The false-positive rate of the single-trait analysis
was equal to 0.031. The multiple-trait analysis Q1+Q2
+Q4+D detected six causal genes and 58 false-positive
genes. The false-positive rate of the Q1+Q2+Q4+D
analysis was equal to 0.023. This result shows that,
compared with the single-trait analysis, the CMT
method combining multiple traits does not increase
the false-positive rate.

Discussion
In some genetic association studies, multiple correlated
traits are available that can be used to identify genes

Table 1 Power to detect the causal genes on Q1 at the 0.05 significance level

Gene Q1 Q2 Q4 D Q1+D Q1+Q2
+Q4+D

OCMT Subset with the highest power (power)

ARNT 0.185
0.145

0.050
0.050

0.055
0.040

0.070
0.065

0.180
0.165

0.140
0.115

0.160
0.135

Q1+D (0.180)
Q1+D (0.165)

ELAVL4 0.520
0.045

0.050
0.035

0.060
0.045

0.030
0.045

0.465
0.040

0.390
0.040

0.380
0.045

Q1+D (0.465)
Q1+Q4 (0.055)

FLT1 1.000
0.995

0.075
0.075

0.055
0.040

0.700
0.475

1.000
0.995

1.000
0.985

1.000
0.980

Q1+D (1.000)
Q1+Q2 (1.000)

FLT4 0.865
0.030

0.055
0.040

0.060
0.060

0.290
0.085

0.765
0.065

0.600
0.045

0.655
0.045

Q1+D (0.765)
Q2+D (0.085)

HIF1A 0.565
0.025

0.220
0.080

0.040
0.020

0.280
0.095

0.530
0.055

0.450
0.060

0.465
0.065

Q1+D (0.530)
Q2+D (0.090)

HIF3A 0.030
0.090

0.055
0.040

0.065
0.060

0.030
0.050

0.010
0.080

0.035
0.065

0.045
0.060

Q2+Q4 (0.060)
Q1+Q4 (0.085)

KDR 1.000
0.995

0.115
0.020

0.055
0.025

0.680
0.425

1.000
0.990

1.000
0.985

1.000
0.985

Q1+D (1.000)
Q1+D (0.990)

VEGFA 0.525
0.305

0.065
0.040

0.055
0.040

0.115
0.090

0.460
0.230

0.320
0.135

0.335
0.135

Q1+D (0.460)
Q1+D (0.230)

VEGFC 0.785
0.720

0.050
0.045

0.065
0.050

0.325
0.300

0.790
0.665

0.600
0.490

0.625
0.530

Q1+D (0.790)
Q1+D (0.665)

We report the powers without (upper) and with (lower) the adjustment of stratification for the single-trait analyses (Q1, Q2, Q4, D), the CMT method for Q1 and
D (Q1+D), the CMT method for all the four traits (Q1+Q2+Q4+D), and the OCMT method (OCMT). The last column presents the subset with the highest power
among all the subsets with at least two traits and its power (in parentheses).
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responsible for multiple traits. In single-trait analysis,
some common associated genes may be found across
different traits. These overlapping associations may be
caused by pleiotropic genes and/or the correlation struc-
ture among traits. Multiple-trait analysis has the poten-
tial to improve the power to detect pleiotropic genes.
The multiple-trait analysis proposed here did not suffer
a significant loss of power, even though true models,
such as the GAW17 simulated model, had small or no
pleiotropic effects. The proposed method considers the
correlation matrix, thereby ensuring that the false-posi-
tive rate is not inflated by the correlation among multi-
ple traits.
In next-generation sequencing data sets, huge num-

bers of rare variants are genotyped across the whole
genome. Because of the small number of observations
for each rare variant, statistical tests for common var-
iants are inefficient at identifying the associations.
Hence the proposed method performs a gene-level test
using the weighted sum to test the joint effect of multi-
ple variants within a gene. The weighted sum is a feasi-
ble choice for the gene-based score [8], but it is not the
only choice; other methods are available for pooling
multiple rare variants [4].

From Tables 1 and 3, it can be seen that the correc-
tion for population stratification has a large effect on
the power to detect some associations with Q1, D, and
Q1+Q2+Q4+D. This phenomenon also was observed
from the quantile-quantile plots in replicate 1 (data not
shown). Although we did not consider the population
structure in the simulation model, the principal compo-
nent scores may influence the phenotypes, because the
population structures would be similar to those of the
true causal genes in this data set [13]. We conclude that
the rare variant associations unadjusted for population
stratifications should be interpreted with caution.

Conclusions
With the advent of next-generation sequencing technol-
ogies, the identification of rare variants has become rea-
listic. Statistical methods for common variants are not
applicable in rare variant analysis because of the small
number of observations and the huge number of rare
variants across the whole genome. Thus efficient statisti-
cal methods are needed. When multiple related traits
are available, it is expected that multiple-trait analysis
has the improved power to detect pleiotropic genes. We
proposed the CMT and OCMT methods to examine the

Table 2 Power to detect the causal genes on Q2 at the 0.05 significance level

Gene Q1 Q2 Q4 D Q2+D Q1+Q2
+Q4+D

OCMT Subset with the highest power (power)

BHCE 0.060
0.055

0.445
0.430

0.075
0.060

0.170
0.160

0.340
0.340

0.210
0.190

0.215
0.205

Q2+D (0.340)
Q2+D (0.340)

GCKR 0.040
0.055

0.415
0.430

0.040
0.020

0.105
0.105

0.380
0.385

0.310
0.330

0.295
0.350

Q1+Q2 (0.455)
Q1+Q2 (0.390)

INSIG1 0.045
0.035

0.030
0.035

0.055
0.045

0.550
0.045

0.050
0.030

0.070
0.045

0.065
0.035

Q1+Q4+D (0.080)
Q1+D (0.065)

LPL 0.065
0.070

0.095
0.165

0.055
0.020

0.090
0.045

0.065
0.140

0.125
0.125

0.120
0.130

Q1+D (0.190)
Q1+Q2 (0.210)

PDGFD 0.020
0.020

0.275
0.300

0.040
0.030

0.105
0.070

0.175
0.225

0.160
0.175

0.155
0.175

Q1+Q2+D (0.190)
Q2+D (0.225)

PLAT 0.025
0.025

0.050
0.070

0.010
0.010

0.075
0.095

0.060
0.095

0.045
0.045

0.040
0.035

Q2+D (0.060)
Q2+D (0.095)

RARB 0.225
0.050

0.105
0.070

0.095
0.040

0.075
0.060

0.075
0.055

0.145
0.065

0.135
0.070

Q1+Q2 (0.160)
Q1+D (0.070)

SIRT1 0.050
0.065

0.605
0.555

0.060
0.050

0.090
0.090

0.530
0.450

0.445
0.410

0.480
0.430

Q1+Q2 (0.545)
Q1+Q2 (0.515)

SREBF1 0.085
0.035

0.515
0.540

0.055
0.035

0.115
0.100

0.420
0.500

0.410
0.385

0.415
0.395

Q1+Q2 (0.520)
Q2+D (0.500)

VLDLR 0.025
0.025

0.140
0.230

0.030
0.015

0.090
0.070

0.145
0.210

0.095
0.125

0.100
0.095

Q2+D (0.145)
Q2+D (0.210)

VNN1 0.465
0.045

0.210
0.050

0.065
0.065

0.115
0.045

0.140
0.050

0.295
0.035

0.285
0.030

Q1+Q2 (0.360)
Q1+Q2 (0.065)

VNN3 0.035
0.025

0.460
0.380

0.055
0.035

0.070
0.055

0.365
0.275

0.260
0.205

0.280
0.195

Q2+Q4 (0.040)
Q2+Q4 (0.280)

VWF 0.030
0.025

0.245
0.205

0.050
0.035

0.140
0.075

0.205
0.170

0.115
0.110

0.110
0.120

Q2+D (0.205)
Q2+D (0.170)

We report the powers without (upper) and with (lower) the adjustment of stratification for the single-trait analyses (Q1, Q2, Q4, D), the CMT method for Q2 and
D (Q2+D), the CMT method for all the four traits (Q1+Q2+Q4+D), and the OCMT method (OCMT). The last column presents the subset with the highest power
among all the subsets with at least two traits and its power (in parentheses).
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joint effect of multiple variants on multiple traits. The
proposed method uses the quadratic or linear combina-
tion of univariate test statistics and thus considers the
correlation structure among multiple correlated traits.
The CMT and OCMT methods were applied to the
GAW17 mini-exome data. The results show that the
method is suitable for multiple trait analysis.
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Table 3 Power to detect the causal genes on the latent liability at the 0.05 significance level

Gene Q1 Q2 Q4 D Q1+Q2
+Q4+D

OCMT Subset with the highest power (power)

AKT3 0.025
0.070

0.045
0.055

0.030
0.020

0.020
0.020

0.040
0.025

0.030
0.030

Q4+D (0.040)
Q1+D (0.045)

BCL2L11 0.030
0.030

0.050
0.075

0.030
0.020

0.065
0.060

0.055
0.065

0.055
0.070

Q1+Q2+D (0.080)
Q2+D (0.095)

ELAVL4 0.520
0.045

0.050
0.035

0.060
0.045

0.030
0.045

0.390
0.040

0.380
0.045

Q1 +D (0.465)
Q1+Q3 (0.055)

HSP90AA1 0.065
0.010

0.050
0.055

0.080
0.040

0.075
0.030

0.095
0.035

0.095
0.045

Q1+Q2+D (0.125)
Q1+Q2+D (0.055)

NRAS 0.015
0.020

0.035
0.035

0.035
0.010

0.095
0.095

0.010
0.015

0.005
0.010

Q4+D (0.045)
Q4+D (0.045)

PIK3C2B 0.030
0.055

0.085
0.105

0.025
0.020

0.200
0.145

0.125
0.100

0.115
0.105

Q1+D (0.190)
Q1+D (0.145)

PIK3C3 0.990
0.280

0.065
0.025

0.045
0.020

0.540
0.200

0.910
0.180

0.915
0.175

Q1+Q4 (0.970)
Q1+Q4+D (0.190)

PRKCA 0.480
0.025

0.045
0.045

0.045
0.010

0.395
0.115

0.310
0.080

0.355
0.080

Q1+D (0.425)
Q2+D (0.100)

PRKCB1 0.025
0.045

0.055
0.060

0.035
0.035

0.035
0.025

0.030
0.045

0.045
0.040

Q2+Q4+D (0.045)
Q1+Q2+Q4+D (0.045)

PTK2 0.660
0.095

0.075
0.025

0.020
0.015

0.160
0.050

0.405
0.035

0.400
0.060

Q1+D (0.530)
Q1+D (0.105)

PTK2B 1.000
0.190

0.235
0.020

0.040
0.055

0.525
0.090

0.990
0.135

0.995
0.130

Q1+D (0.995)
Q1+Q4+D (0.155)

RRAS 0.025
0.040

0.045
0.035

0.045
0.025

0.090
0.085

0.050
0.040

0.045
0.045

Q2+Q4 (0.040)
Q2+Q4 (0.280)

SHC1 0.280
0.035

0.020
0.030

0.065
0.045

0.105
0.045

0.150
0.015

0.155
0.015

Q1+Q2+D (0.065)
Q2+D (0.090)

SOS2 0.840
0.105

0.065
0.065

0.030
0.015

0.180
0.090

0.580
0.080

0.610
0.085

Q1+D (0.745)
Q1+Q2+D (0.105)

We report the powers without (upper) and with (lower) the adjustment of stratification for the single-trait analyses (Q1, Q2, Q4, D), the CMT method for all the
four traits (Q1+Q2+Q4+D), and the OCMT method (OCMT). The last column presents the subset with the highest power among all the subsets with at least two
traits and its power (in parentheses).
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