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Abstract

We evaluate four association tests for rare variants—the combined multivariate and collapsing (CMC) method, two
weighted-sum methods, and a variable threshold method—by applying them to the simulated data sets of
unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and
average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare
variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when
only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all
four methods can control FWER well. All four methods have comparable power, which is low for the analysis of
the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using
permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast
permutation procedure into these three methods. The results show that using the fast permutation procedure can
produce FWERs and average powers close to the values obtained from the standard permutation procedure on
the GAW17 data sets. The standard permutation procedure is computationally intensive.

Background
Genome-wide association studies have become a useful
tool for identifying the genetic variants that influence
complex diseases or traits [1]. Traditional association
tests can perform effectively for the common variant/
common disease model [2], but they have low power to
detect rare variants. The major reasons are that rare var-
iants have very low minor allele frequencies (MAFs) (e.
g., less than 1% or less than 5%) and have high allelic
heterogeneity. Studies have shown that rare variants can
contribute significantly to common diseases [3], and sev-
eral methods designed for rare variants have been devel-
oped [4-6]. Li and Leal [4] proposed a combined
multivariate and collapsing (CMC) method that groups

and collapses rare variants. Madsen and Browning [5]
proposed two weighted-sum methods that combine rare
variants into a functional unit by using a weighted
approach. Price et al. [6] extended these methods by
using a variable threshold method that selects an opti-
mal threshold and assumes that variants with MAFs
below this threshold are substantially more likely to be
functional. These four methods are reviewed in more
details by Dering et al. [7]. The developers of these
methods have evaluated their methods using simulation
studies. However, the designs of these simulation studies
are different from each other. The Genetic Analysis
Workshop 17 (GAW17) data provide an opportunity for
us to further evaluate these methods in a relatively
unbiased manner. In this paper, we compare these four
methods using the simulated data sets of unrelated
individuals in the GAW17 data.
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Methods
Evaluation criteria
In this study, we analyze only nonsynonymous single-
nucleotide polymorphisms (SNPs) from 22 autosomal
chromosomes. The SNPs in each gene are analyzed as a
functional unit. For a genome-wide significance level of
a = 0.05, we use the Bonferroni procedure to adjust the
threshold (a′) for each gene, a′ = a/ngene. Genes with p-
values less than or equal to a′ are treated as significant
genes.

Family-wise error rate
When testing association for a single gene, one can use
the type I error rate to measure the false-positive dis-
coveries. For genome-wide gene-based association stu-
dies that involve multiple hypothesis testing, we use the
family-wise error rate (FWER) to measure the false-
positive discoveries. The FWER is the probability of fal-
sely rejecting at least one true null hypothesis. When
analyzing the 200 simulated replicates of unrelated indi-
viduals in the GAW17 data, we estimate the FWER as
FWER = nf /n, where nf is the number of replicates in
which at least one unrelated gene is falsely detected and
n = 200 is the total number of phenotype replicates of
simulated data.

Average power
For testing a single gene that affects the disease, we can
calculate the power of a test. This power is referred to
as the per-hypothesis power. For genome-wide gene
association studies, we estimate the average power,
which is defined as the average of the per-hypothesis
powers of tests for the genes that affect the disease [8].
For example, in the GAW17 data with 2,196 genes, if
only 10 genes affect the disease status, then the average
power is the mean of the per-hypothesis powers of tests
for these 10 genes.

Four association tests for rare variants
We describe briefly the four methods used in this study:
the CMC method, the two weighted-sum methods, and
the variable threshold method.
The basic idea of the CMC method [4] is to empiri-

cally aggregate the rare variants (SNPs) in a functional
unit into several subgroups according to their MAFs.
Each subgroup is treated as a new single variant in the
subsequent multivariate analysis (such as the Hotelling
test).
For a case-control data set, weighted-sum method I

proposed by Madsen and Browning [5] tests a gene each
time. It calculates a genetic score (gj) for individual j as
a weighted sum of the genetic scores of all variants in

the gene and then calculates the sum of the ranks for
affected individuals as:

x j

j A

=
∈
∑ rank( ),g (1)

where A is the population of the affected individuals.
For the case-control data set, permuting the affected or
unaffected status of the individuals can generate a
new data set. Suppose that k permuted data sets are
generated from the original data set by permutation. Let
xj denote sums of ranks for the jth permuted data set
(j = 1, 2, …, k). Let m̂ and ŝ denote the mean and
sample standard deviation, respectively, of these xj.
Weighted-sum method I defines a standardized score-
sum test statistic:

z
x= −( )m
s

(2)

and assumes that z has an approximately standard
normal distribution under the null hypothesis. The
p-value of the test statistic z for the observed data is cal-
culated using the normal distribution N(0, 1) [5,7].
Weighted-sum method II follows the same steps as

weighted-sum method I except that it constructs a test
statistic based on the sum of the genetic scores,

x j

j A

=
∈
∑g , (3)

in place of the sum of the ranks given by Eq. (1).
Madsen and Browning [5] mentioned that these two
methods have similar results. Price et al. [6] provides a
clear description of weighted-sum method II.
Price et al. [6] proposed a variable threshold method.

This method defines a z-score statistic and chooses the
optimal threshold that maximizes the z score. In this
method, p-values are estimated using a standard permu-
tation procedure.

Estimating p-values using a fast permutation procedure
Except for the CMC method, the other three methods
estimate p-values using permutation procedures. The
standard permutation procedure can be computationally
intensive, but the normal approximation procedure
described for weighted-sum method I can inflate the
type I error rate (see Results section). In this study, we
adapt a fast permutation procedure [9] for the three
methods. Here, we briefly describe the fast permutation
procedure.
In a permutation procedure with N permuted data

sets, the p-value can be estimated using the binomial
distribution B(N, p) [10]. Let X denote the number of
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permutations that are as extreme as or more extreme
than the observed data. By using Agresti-Coull interval
estimation, as recommended by Brown et al. [11], we
can estimate the p-value as:


p

X z

N
=

+( / )/b 2
2 2 (4)

with a 100(1 − b)% confidence interval [PL, PU],
where:
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where f −1 is the inverse of the cumulative distribu-
tion function for the standard normal distribution. We
set b = 0.05 in our study.
In the fast permutation procedure for testing a gene,

given the maximum number of permutations Nm (e.g.,
106), if for any number 1,000 ≤ N ≤ Nm the correspond-
ing lower bound PL is greater than or equal to a′, then
the true p-value for this gene is unlikely reach the
Bonferroni threshold a′; therefore we give up the
permutation procedure and do not reject the null
hypothesis for this gene. This procedure can save com-
puting time significantly. Note that in this paper, for the
standard permutation procedure, we use (X + 1)/(N + 1)
to estimate the p-value.

GAW17 data sets
The GAW17 data include 24,487 SNPs from 3,205
genes [12]. We test associations only for the 2,196 genes
with nonsynonymous SNPs from the 697 unrelated indi-
viduals. In the data there are four phenotypes: Q1, Q2,
Q4, and disease status. Q1, Q2, and Q4 are quantitative
traits, whereas disease status is a binary trait with the
labels affected or unaffected. For each phenotype, there
are 200 phenotype replicates with the same underlying
genetic information in the simulated data. The three
quantitative traits are associated with 9, 15, and 0 genes,
respectively. The disease status is related to 36 genes.

Because the four methods analyzed in this paper are for
case-control designs, in order to use Q1, Q2, and Q4 to
evaluate these methods, we generate three new binary
traits, D1, D2, and D4 for Q1, Q2, and Q4, respectively.
We assign Di = 1 (disease) for individuals with Qi (i.e.,
Q1, Q2, or Q4) among the top 30% percentile and Di =
0 (control) for the remaining individuals (i = 1, 2, 3).
The phenotypes D1, D2, and disease status are used to
calculate the average power, and D4 is used to calculate
the FWER because D4 is not related to any genes.

Results
Evaluation of the fast permutation procedure
To evaluate the performance of the fast permutation
procedure, we calculate the FWER and average power of
weighted-sum method I, weighted-sum method II, and
the variable threshold method when using different per-
mutation procedures to estimate p-values based on ana-
lyzing the simulated replicates of unrelated individuals
with all nonsynonymous SNPs. The permutation proce-
dures include the normal approximation procedure with
both 103 and 106 permutations, the fast permutation
procedure with the maximum number of permutations
Nm = 106, and the standard procedure with 106 permu-
tations. We set the genome-wide significance level to a
= 0.05. Here we report only the FWER and average
power of weighted-sum method I (Table 1). Weighted-
sum method II and the variable threshold method have
similar results.
From Table 1, we can see that the results from the

normal approximation procedures have much higher
FWERs than the other procedures. The fast permutation
procedure has the lowest FWER: 0.055, which is very
close the nominal level 0.05. The computing time of the
fast permutation procedure is about one-fourth that of
the standard procedure. Table 1 also shows that the
power of weighted-sum method I when using the fast
permutation procedure is almost the same as the power
when using the standard permutation procedure. To
some extent, the fast permutation procedure is slightly
more conservative than the standard permutation
procedure.
Why do the normal approximation procedures in the

two weighted-sum methods generate inflated FWERs?
One major reason is that the two methods assume that
the standardized score-sum test statistics z given by Eq.
(2) approximately follow the standard normal distribu-
tion N(0, 1) under the null hypothesis. However, this
may not be the case when the two methods are applied
to the 200 simulated case-control data sets from
the GAW17 data. For these data sets, when we set k =
1,000 or even larger, the quantile-quantile plots show
that the score-sum test statistics z often have
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distributions that deviate from the normal distribution
(data not shown).

Comparison of the four association methods
Because the fast permutation procedure has good per-
formance, we incorporate it into the two weighted-sum
methods and the variable threshold method to estimate
p-values. To compare the four methods, we apply them
to two scenarios: In scenario 1 all nonsynonymous SNPs
(rare and common variants) and therefore 2,196 genes
are analyzed. Thus ngene = 2,196, and the threshold for a
single-gene a′ = 2.27 × 10−5. In scenario 2 only nonsy-
nonymous SNPs with MAF < 0.05 and therefore 1,999
genes are analyzed. The corresponding ngene = 1,999,
and a′ = a/ngene = 2.5013 × 10−5. When applying the
CMC method to scenario 1, we divide nonsynonymous
SNPs in a gene into subgroups as follows: SNPs with
MAFs in the interval (0, 0.01] form the first subgroup,
and SNPs in the interval (0.01, 0.1) form the second
subgroup; each remaining SNP with MAF ≥ 0.1 is trea-
ted as a subgroup by itself; all subgroups (variants) are
analyzed using a Hotelling T2 test. When applying the
CMC method to scenario 2, we divide nonsynonymous
SNPs in a gene into three subgroups with SNPs having
MAFs in the intervals (0, 0.001], (0.001, 0.01], and (0.01,
0.05].
Tables 2 and 3 show the results for scenarios 1 and 2,

respectively. When all nonsynonymous SNPs are

analyzed, the CMC method has the highest inflated
FWER and weighted-sum method I has slightly inflated
FWER compared to the nominal level of 0.05; the other
two methods control the FWER well. On the other
hand, when only nonsynonymous SNPs with MAF <
0.05 are analyzed, all four methods can control the
FWER well.
The FWER of the variable threshold method is 0 in

Table 3. This is a little surprising. To verify the validity
of the results, we also perform the standard permutation
procedure with 106 permutations. The standard permu-
tation gives a FWER of 0.005 and exactly the same
power as that of the fast permutation procedure. This
shows again that the fast permutation method has
slightly lower FWERs than the standard procedure does
but has comparable average power. The reason that the
FWER is 0 (or close to 0 in the standard permutation
procedure) may be the small number of replicated data
sets (200) and the conservative nature of the variable
threshold. Tables 2 and 3 also show that all four
methods have comparable power, which is low based on
the analysis of the GAW17 data sets. No method has
consistently better performance than other methods.
The CMC method is based on the Hotelling T2 test

for subgroups of variants in a gene. Under the null
hypothesis that no variants are associated with the dis-
ease, a key assumption for the Hotelling T2 test is that
within each subgroup the proportion of individuals with

Table 2 Results for the 200 data sets with all
nonsynonymous SNPs

Association method FWER Power

D4 D1 D2 Disease

CMC 0.1150 0.1439 0.0062 0.0044

Weighed-sum method I 0.0550 0.1172 0.0065 0.0065

Weighted-sum method II 0.0400 0.1511 0.0042 0.0019

Variable threshold 0.0250 0.1306 0.0031 0.0064

Table 3 Results for the 200 data sets with
nonsynonymous SNPs with MAF < 0.05

Association method FWER Power

D4 D1 D2 Disease

CMC 0.0100 0.1417 0.0023 0.0013

Weighted-sum method I 0.0150 0.1467 0.0015 0.0030

Weighted-sum method II 0.0100 0.1194 0.0023 0.0004

Variable threshold 0 0.1289 0.0031 0.0014

Table 1 Family-wise error rate (FWER) and average power of weighted-sum method I using different permutation
procedures

Permutation procedurea FWER Power Computing time (approximate)b

D4 D1 D2 Disease

Normal 103 0.1600 0.1200 0.0123 0.0069 36 minutes

Normal 106 0.1200 0.1200 0.0085 0.0074 16 days

Standard permutation 0.0650 0.1183 0.0065 0.0069 16 days

Fast permutation 0.0550 0.1172 0.0065 0.0065 4.5 days

Data used here are the 200 data sets from GAW17 with all nonsynonymous SNPs.
aNormal 103 is the normal approximation with 1,000 permutations; normal 106 is the normal approximation with 106 permutations; standard permutation is the
standard permutation procedure with 106 permutations; and fast permutation is the fast permutation procedure with the maximum number of permutations,
106.
bAll studies are performed in Matlab on a computer with a CPU of 2.66 GHz and 32 GB memory. The computing time is the total running time for all four
phenotypes.
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at least one minor allele in case subjects is equal to the
proportion in control subjects. When there is possible
population stratification in the data as well as the exis-
tence of confounding variables such as Age or Smoking,
the assumption may not be true and therefore the
FWER of the Hotelling T2 test is inflated. The results
also show that common variants are the main sources of
the inflated FWERs (the CMC method does not have an
inflated FWER when applied to SNPs with MAF < 0.05).

Discussion
In this study, we evaluated four association tests for
detecting rare variants by using the GAW17 data sets.
When the rare variants and common variants were
jointly analyzed, two methods (CMC and weighted-sum
method I) had an inflated FWER; when only rare var-
iants with MAF < 0.5 were analyzed, the four methods
could control the FWER. It seems that including com-
mon variants in the analysis can increase the FWER of
these four methods.
It is natural to ask why the average powers of these

four methods are low for the analysis of the GAW17
data sets. There are three possible reasons. First, the
phenotypes Q1 and Q2 do not completely depend on
the genetic data. They also depend on other factors,
such as age, sex, smoking history, and the correlation
between Q1 and Q2. These factors may make it hard to
detect the associated genes. Using a more general model
that could account for these factors might improve the
power. Second, the phenotypes are influenced by multi-
ple genes. The effect of each gene may not be large,
although the combined effects may be considerably sig-
nificant. Testing a gene only individually certainly does
not consider the aggregation effect of genes in the data.
Third, population stratification and admixture may
cause loss of power.

Conclusions
For the simulated data sets of unrelated individuals in
the GAW17 data, when the rare variants and common
variants are analyzed jointly, the CMC method cannot
control the FWER and weighted-sum method I has a
slightly inflated FWER; when only the rare variants with
MAF < 0.05 are analyzed, all methods control the
FWER well. In both situations, the four methods have
comparable power, which is low, because of the com-
plexity of the GAW17 data. Using the fast permutation
procedure for p-value estimation can produce FWERs
and average powers close to those obtained using the
standard permutation procedure.
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