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Abstract

Genome-wide association studies have helped us identify thousands of common variants associated with several
widespread complex diseases. However, for most traits, these variants account for only a small fraction of phenotypic
variance or heritability. Next-generation sequencing technologies are being used to identify additional rare variants
hypothesized to have higher effect sizes than the already identified common variants, and to contribute significantly
to the fraction of heritability that is still unexplained. Several pooling strategies have been proposed to test the joint
association of multiple rare variants, because testing them individually may not be optimal. Within a gene or
genomic region, if there are both rare and common variants, testing their joint association may be desirable to
determine their synergistic effects. We propose new methods to test the joint association of several rare and
common variants with binary and quantitative traits. Our association test for quantitative traits is based on genotypic
and phenotypic measures of similarity between pairs of individuals. For the binary trait or case-control samples, we
recently proposed an association test based on the genotypic similarity between individuals. Here, we develop a
modified version of this test for rare variants. Our tests can be used for samples taken from multiple subpopulations.
The power of our test statistics for case-control samples and quantitative traits was evaluated using the GAW17
simulated data sets. Type I error rates for the proposed tests are well controlled. Our tests are able to identify some of
the important causal genes in the GAW17 simulated data sets.

Background
Genome-wide association studies have helped us to
understand the genetic basis of several complex diseases
and have identified thousands of variants associated
with such diseases [http://www.genome.gov/gwastudies].
However, these variants explain only a small proportion
of the phenotypic variance or heritability of a trait [1,2].
The fraction of heritability left unexplained might be
determined by more common variants with small effect
sizes, yet-to-be-identified rare variants with moderate to
high effect sizes, and other types of variants, such as
copy number and complicated structural variants. Next-

generation sequencing technologies might help us to
identify rare and functionally relevant variants through
targeted resequencing and whole-genome sequencing.
Through resequencing, rare variants can be shown to be
associated with several phenotypes [3,4]. Currently, a
number of exome sequencing studies aimed at identify-
ing rare functional variants are under way. Because the
cost of sequencing is falling rapidly, in the near future
we can expect investigators to undertake whole-genome
sequencing studies to characterize all the variants that
determine many phenotypes.
One active area of research in statistical epidemiology

is the development of efficient statistical tests to detect
associations involving rare variants. In resequencing stu-
dies, the number of variants available for testing within
a genomic region is generally large. Selecting rare
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variants for association tests presents a challenge. Using
statistical tests of association for each rare variant is not
an optimal strategy because of multiple test issues and
the typically low statistical power of the test for rare
variants. Therefore many of the procedures proposed in
the literature involve some kind of pooling or the use of
a weighted combination of the rare variants to establish
the joint association [5]. King et al. [6] incorporated the
fitness effects of rare variants into association testing,
under the framework of mixed effects linear models.
Bhatia et al. [7] proposed a method of association testing
for rare variants, referred to as the covering method, that
is based on a subset of variants that achieve maximum dis-
crimination between case subjects and control subjects.
Zawistowski et al. [8] proposed a simple pooling technique
based on cumulative minor allele counts, which can also
be used for imputed rare variants (e.g., rare variants
imputed based on the 1000 Genomes Project).
Recently, we developed a test statistic, the kernel-based

association test (KBAT), to test the joint effect of
multiple variants based on the genetic similarity between
individuals [9]. In the current study, we modify this
method to include rare variants and to extend it for mul-
tiple subpopulations. Our test statistic can be based on
either only rare and functionally relevant variants or both
rare and common variants to determine their synergistic
effects [3]. Also, to test the association of quantitative
traits, we propose a new test statistic, which we refer to
as the quantitative trait KBAT (QT-KBAT); this statistic
is based on genotypic and phenotypic measures of
similarity between pairs of individuals. We then use the
KBAT and the newly proposed QT-KBAT statistic to test
the association of rare and common variants with
both binary and quantitative traits. To evaluate the per-
formance of the two test statistics, we use the Genetic
Analysis Workshop 17 (GAW17) simulated data sets.

Methods
Here, we present methods for testing the joint associa-
tion of several rare and common variants with binary
and quantitative phenotypes. To construct the test with
all variants, rare variants are pooled and common
variants are considered individually. We introduce first a
pooling strategy used for rare variants, followed by the
measures of genotypic and phenotypic similarity
between individuals. Next we describe the KBAT statis-
tic, which is based on pooled rare variants and common
variants for multiple subpopulations. Finally, we present
the statistic for quantitative traits (the QT-KBAT).

Pooling of rare variants
Suppose that genotyping is done for n individuals on K
single-nucleotide polymorphisms (SNPs) within a geno-
mic region or gene. To test the joint association of all

SNPs, the rare SNPs are pooled, as described in what
follows.
Let gi

k ∈{ , , }0 1 2 denote the genotype code (the
number of minor alleles) at the kth SNP for the ith indivi-
dual. Based on a minor allele frequency (MAF) threshold,
without loss of generality we assume that 1 to Kr are rare
SNPs and that the rest, Kc = K − Kr, are common SNPs.
The combined genotype of the rare variant is given by:
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The pooled genotype is the total number of minor
alleles among the rare variants truncated at 2. For the
gene-level test, the truncation does not involve much loss
of information because the proportion of individuals with
more than two rare variants within a gene is usually small.
This coding is only a convenience and not a constraint for
the current analysis. Other types of pooling strategies can
be devised based on the nature and function of the SNPs.
However, in tests with several rare variants, as in a path-
way-level or whole-genome-level test, different thresholds
for pooling can be used. But, this issue is not discussed
here because it is beyond the scope of this paper.

Similarity measures
We use two types of similarity measures: the allele
match kernel for genotype similarity and the Euclidean
distance for phenotype similarity.
For any SNP (pooled rare or common), the allele

match kernel score determines the number of alleles
common to genotypes gi and gj of two individuals i and
j. The score is 4 if gi and gj are the same, 2 if one is a
heterozygote and the other a homozygote, and 0 if they
do not share any common alleles (Table 1). The power
of the allele match kernel score is comparable to several
other kernel similarity functions. This kernel is similar
to the identity-by-state allele-sharing kernel function
used by other researchers (see Mukhopadhyay et al. [9]
for details).

Table 1 Similarity score between a pair of genotypes gi
and gj using the allele match kernel

Allele match for gi

gj 0 1 2

0 4 2 0

1 2 4 2

2 0 2 4
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Let Ti = (t1i, t2i, …, tQi) and Tj = (t1j, t2j, …, tQj) denote
a vector of Q quantitative trait values for two individuals
i and j. The square of the Euclidean distance between
two vectors is used to define the phenotypic similarity
between two individuals, which is given by:

y t tij qi qj

q

Q

( ) ( ) .= −
=

∑ 2

1

(2)

Two individuals who have similar trait values will
therefore have a lower similarity score compared to
individuals with different trait values. Although there
are several measures of phenotypic similarity, only the
Euclidean distance metric is considered here.

Test statistic for case-control samples (KBAT)
Assume that we have genotypes for n1 case subjects and
n2 control subjects for K SNPs. Details of the KBAT sta-
tistics for testing the joint association of all K SNPs with
the disease are given by Mukhopadhyay et al. [9]. Here,
we briefly present the test statistic based on pooled rare
variants and common variants.
For the kth SNP, k S P K Kr∈ = +{ , , , }1 , where P

denotes the subscripts for the pooled rare variants
h g gl
k

i
k

j
k( , ) , which is the genotypic similarity between

two individuals i and j within group l (l = 1 denotes a
case subject and l = 2 denotes a control subject) with
the respective genotypes gi

k and g j
k , respectively. We

use the U statistic, denoted as:
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The between-group sum of squares (SSB) is repre-
sented by:
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based on the analysis of variance (ANOVA) model, is
used to test the joint effect of all SNPs with the disease
status.

Test statistic for quantitative traits (QT-KBAT)
Based on the measures of genotypic and phenotypic
similarity, we introduce a KBAT-type method to test the
association of genotypes with quantitative phenotypes.
For a SNP k, consider the genotypic similarity scores of
the allele match kernel, given in Table 1. There are only
three possible similarity values between any two indivi-
duals; hence all possible pairs of individuals from n sam-
ples can be assigned to one of these three similarity
groups. Individuals from group 1 are those pairs whose
genotype similarity value is 4, that is, those pairs with
genotypes (0, 0), (1, 1), and (2, 2). Individuals from
groups 2 and 3 can be similarly identified.
Let:
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denote the pairs of individuals in groups 1, 2, and 3,
respectively. Then, the number of individuals in these
groups is given by:
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n G n f f f fk k( ) ,2 2 0 1 1 2= = + (13)

and:

n G n f fk k( ) ,3 3 0 2= = (14)
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respectively, where f0, f1, and f2 denote the frequency
of the genotype counts 0, 1, and 2, respectively, for SNP
k. Note that the number of groups m (here m = 3) and
the genotype pairs within the groups can vary depending
on the definition of the kernel function used to score
the genotype similarity.
If genotypes are associated with the trait values, then a

strong correlation would be expected between the geno-
typic and the phenotypic similarity. Therefore the aver-
age similarity for the pairs across these three groups
should be different. In general, a higher average pheno-
typic similarity is expected in groups with higher geno-
typic similarity. Thus genotypic similarity is compared
across three groups using the one-way ANOVA model,
as in KBAT. Consider the model:

y e i j G l ml ij
k

l l ij l
k

( ) ( ) ( , ) .= + + ∈ =m a for  and 1, 2, ..., (15)

Here, yl ij
k
( ) denotes the phenotypic similarity for the

pair (i, j) in group Gl
k based on the similarity group

induced by the k; μ is the overall mean or the general
effect for pairs of individuals; al denotes the group-
specific treatment effect for similarity scores over the
general effect; and el(ij) are the error components.
To test the joint association of the K SNPs with the

traits, the QT-KBAT statistic is defined as:
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denote the within-group sum of squares and the
between-group sum of squares, respectively, for SNP k,

N nk
l
k

l

m

=
=
∑

1

, (19)

y
y

N
k l ij

k

k
i j Gl

m

l
k

=
∈=

∑∑ ( )

( , )

,
1

(20)

and

y
y

n
l
k l ij

k

l
k

i j Gl
k

=
∈

∑ ( )

( , )

. (21)

The usual assumptions of the ANOVA model are not
valid because the observations within each of the groups
are correlated. In addition, the distribution of phenoty-
pic similarity values, as defined earlier (Eq. 2), may not
follow a normal distribution. Therefore permutations
are used to compute the p-value of the ℑ statistic in Eq.
(16). The test statistics for the quantitative trait are
slightly different from the KBAT statistics for case-con-
trol samples (sum of F ratios compared to the ratio of
the sum of the SSBs to the sum of the SSWs). Although
it is straightforward to define QT-KBAT similarly to
KBAT, the form in Eq. (16) is used so that the F statis-
tics of the one-way ANOVA from any standard compu-
ter program can be directly used.

Extension to multiple subpopulations
Suppose that samples of sizes Ni (i = 1, 2, …, L) are
obtained from L different populations. When performing
tests of association using regression models, it is possi-
ble to use subpopulation indicator variables to account
for population stratifications. Here, we adopt a similar
approach by taking the weighted combination of the
population-specific F statistics. The combined statistic
for the whole data set is given by:
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i = 1, 2, …, L, and the ℑi are the population-specific
case-control (KBAT) or quantitative trait (QT-KBAT)
association statistics defined by Eq. (8) or Eq. (16),
respectively.

Results
The GAW17 mini-exome genotype data consist of sub-
samples from several ethnic cohorts. The samples from
Europeans, Asians, and Africans are well separated in
the plot of principal components derived with and with-
out rare variants (data not shown). From the simulation
model, we know that the phenotypes were simulated
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without reference to the ethnicity of the samples.
However, we performed the analysis twice, once
assuming a single population and once assuming three
subpopulations (Europeans, Asians, and Africans).
Furthermore, we considered two categories of SNPs:
(1) only nonsynonymous SNPs, because the phenotype
simulations are based on only nonsynonymous SNPs;
and (2) all SNPs, to examine changes in the power of
the test statistic for additional noncausal variants. We
used the KBAT statistic to test the association of genes
with case-control status, and we used the QT-KBAT
statistic to perform three separate tests for the quanti-
tative traits, namely, Q1, Q2, and a multivariate trait
(Q1, Q2, Q4). There are 3,205 genes for the all-SNPs
analysis and 2,194 genes for the nonsynonymous-
SNPs-only analysis. For the case-control analysis
(KBAT) we tested all the genes, and for the quantita-
tive traits analysis (QT-KBAT) we tested only the cau-
sal genes (9 for Q1, 13 for Q2, and 36 for the
multivariate trait analysis; see Almasy et al. [10] for
the details of the simulation model). As noted, we per-
formed the analysis twice. Here, we discuss only the
results corresponding to the analysis assuming a single
population. The complete set of results can be
obtained from the corresponding author.

Pooling
For a given set of SNPs within a gene, we first pooled all
rare SNPs (MAF < 0.05) and no pooling was done for
common SNPs. For example, if a gene contained seven
rare SNPs and three common SNPs, then our gene-level
test would have four SNPs (one pooled using the seven
rare SNPs and the three common SNPs). We used a
pooling MAF threshold of 0.05 because we wanted to
have a reasonable frequency of the three counts of the
kernel score for pooled SNPs for our QT-KBAT statis-
tics. A reduced threshold increases the number of SNPs
for our test statistics and hence may reduce the power.

Type I error
We also checked the type I error rates of the KBAT and
QT-KBAT statistics. For type I error computation, we
first selected one of the 200 replicates of phenotypes at
random and then permuted the original phenotype; p-
values for the permuted data set were obtained with an
additional 2,000 permutations of the phenotypes.

Power
For each of the 200 iterations, we computed the p-
values of association tests using 2,000 permutations of
the trait values. Assuming that the phenotypes in the
200 iterations were generated under the alternative
hypothesis, the power of the test at a 5% level of signifi-
cance was computed here as the proportion of times the

unadjusted p-values were less than 0.05 out of the 200
iterations.

Case-control association
Type I error rates for the KBAT statistic for rare var-
iants were well controlled (Figure 1). To understand the
false-positive rate for the KBAT statistic, we first
removed the 695 spuriously associated genes reported
by Luedtke et al. [11]. Therefore we were left with 1,499
and 2,510 genes, respectively, for the analyses of nonsy-
nonymous SNPs and all SNPs. With a set power thresh-
old of 0.4 to declare significance, in the nonsynonymous
SNPs analysis we found 68 associated genes above this
threshold, of which 5 were causal under the simulation
model. Therefore we had 63 false positives out of 1,499
genes, which represents approximately 4%. In the analy-
sis considering all SNPs, we found 5 causal and 131
false-positive genes with power greater than 0.4, which
gave a false-positive rate of approximately 5%. The
power of the KBAT statistic for all 36 causal genes is
shown in Figure 2.

Quantitative traits association
The quantile-quantile (Q-Q) plot based on the random
sample of 1,000 genes shows that the type I error rate
for QT-KBAT is well under control (Figure 1). We
restricted the analysis to only the causal genes to exam-
ine the power of the QT-KBAT statistic. The powers for
the quantitative traits Q1 and Q2 with the causal genes
is plotted in Figure 2. There are three genes with power
greater than 0.4 for Q1 for both the nonsynonymous-
SNPs-only and all-SNPs analyses, but only one gene for
Q2 under the all-SNPs analysis. For the multivariate
trait, we tested all 36 causal genes and found powers of
0.984 for gene FLT1, 0.751 for KDR, 0.338 for VEGFC,
and 0.29 for PIK3C3.
The Q-Q plot shown in Figure 2 is only an approxi-

mation because the distribution of the test statistic for
different genes is not the same as a result of variation in
the number and frequency spectrum of the variants
within the genes. Furthermore, we could not examine
the false-positive associations for the quantitative trait
because not all the genes were tested. However, among
the case and control subjects there were several noncau-
sal rare variants with genotype frequency similar to the
causal variants. These noncausal variants automatically
generated association with the phenotypes, which were
not false-positive but latent associations. Hence the
false-positive calculations using this data set may not be
accurate.

Discussion
We proposed joint association tests for both rare and
common variants in a genomic region. A comparison of
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the analysis of all SNPs with the analysis involving only
nonsynonymous SNPs showed that the inclusion of
additional nonassociated SNPs in general reduced the
power of the test. However, if moderately common var-
iants are close to the rare causal variants, it is possible
that the latent correlation between these common and
rare variants may improve the power of the test when
these common variants are included. For example, the
gene SIRT1 has improved power for all SNPs because
this gene has a synonymous SNP (C10S3059) with MAF
= 0.167, which has an r2 value of 0.0142 (maximum r2

value for this SNP with all others within this gene) with
the causal variant C10S3110 with MAF = 0.002. Simi-
larly, the higher power values observed with the inclu-
sion of all SNPs in genes ARNT, SHC1, and INSIG1
may be due to these genes having synonymous common
variants with MAFs of 0.43, 0.09, and 0.04, respectively.
Therefore in some cases the synergic effect of common
and rare variants may have improved the power, and we
thus suggest examining the powers of the two analyses:
one that considers only the rare variants and the other
that includes both rare and common variants.
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Figure 1 Quantile-quantile plot of p-values of KBAT and QT-KBAT based on permutations and the expected p-values assuming
uniform distribution. Restricting the analysis to nonsynonymous SNPs, we calculate the p-values for the case-control and quantitative trait
associations based on 2,000 permutations. The plot for quantitative traits is based on the association test with the trait Q1 for a sample of 1,000
genes, and for the case-control test the plot is for all 2,194 genes with at least one nonsynonymous SNP. For each gene the p-value is
calculated using a random selection of one of the 200 replicate data sets.
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Our quantitative association test can be used for test-
ing the pleiotropic effect of genes on multiple pheno-
types. Our multivariate analysis did not identify any
additional causal genes because the GAW17 simulation
model treats each trait independently with separate sets
of causal genes. In future studies we will examine the
power of this approach for testing pleiotropy.
Because of time constraints, our analysis was restricted

to only the allele match kernel for scoring the genotypic
similarity and the squared Euclidean distance for scoring
the phenotypic similarity between individuals. However,
several choices of kernel functions for determining gen-
otypic and phenotypic similarity could be examined. It
is important to identify optimal similarity metrics,
because the interpretation of the analysis and its power
may depend on the similarity measure used.
The association tests proposed here are not adjusted

for other covariates. However, we could perform a

stratified analysis on the subcategories of certain covari-
ates if sufficient samples were available. We are also
exploring the possibility of testing the joint association
of both quantitative and binary traits using a single test
statistic. In addition, we have not included any weights,
such as the frequency or functional weights, of rare var-
iants. Furthermore, we used a MAF threshold of 0.05
for pooling rare variants. In our method, implementing
various subsets for pooling SNPs, such as using MAF
thresholds and the nature of SNPs, is straightforward.
The permutation procedure for the case-control test

statistic KBAT can be efficiently implemented. Using
the KBAT method, we have performed a gene-based
analysis even for data sets from genome-wide associa-
tion studies. The current implementation of the QT-
KBAT to compute the p-value using permutation takes
a long time if there are many SNPs. Therefore we
restricted the quantitative trait analysis to only 36 causal
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genes. We are currently exploring the possibility of effi-
ciently implementing the permutation procedure for
QT-KBAT in a genome-wide analysis.
One of the main drawbacks of our QT-KBAT statis-

tics is the unequal distribution of observations within
groups. The number of observations in each group
depends on the allele frequency of the SNPs (either
pooled or common), and if the MAF is small, then one
of the group sizes may become small or zero.

Conclusions
Future genetic association studies for common complex
genetic disorders will involve the analysis of rare and
common variants. Therefore efficient statistical techni-
ques are needed for their integrated analysis. In the cur-
rent study we proposed methods for testing the joint
association of rare and common variants that underlie
quantitative and qualitative phenotypes. We developed a
test statistic using measures of genotypic and phenotypic
similarity between two individuals under the ANOVA
framework. This approach can also be used for combin-
ing multiple phenotypes and multiple subpopulations.
We applied our statistics to the GAW17 simulated data
sets and identified important simulated causal genes.
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